

Chapter Goals

To collect elements using lists

To use the for loop for traversing lists

To learn common algorithms for processing lists

To use lists with functions

To work with tables of data

10/3/16 Page 2

Contents

e Basic Properties of Lists

* List Operations

e Common List Algorithms

e Using Lists with Functions

* Problem Solving: Adapting Algorithms

* Problem Solving: Discovering Algorithms by Manipulating Physical
Objects

* Tables

10/3/16 Page 3

'\ _’
<J _',".v"~
o V¥
ﬁ:‘??:‘
)"x'\ . 5 .
PIAISY | ya33,
- & ./S?."g_.’. 3 ._j{‘\,‘ ¥y i
- I 4 ‘—g_gﬂf," gy S N X 2
!}’:j s & R i T 3 %
= gi"}'-'é-‘\)ifdjsxl.éil'¢
2 a8 3 3 :
S S P FEIFEy s Fie v
S S PEFTy§e Tre I8
o o - .;‘)Qﬁv:\vn\"é..
== ¢ oS = 53 =
=St - 3 2
== 3o
ENP

Basic Properties Of'LIStS

SECTION 6.1

10/3/16 Page 4

Creating a List

» Specify a list variable with the subscript operator []

Syntax To create a list: [value1, valuey, . . .]

To access an element: listReference [index]

Creates an empty list
Creates a list

moreValues = [] with initial valves

Nawe of list variable
values = [32, 54, 67, 29, 35, 80, 115]

'

Initial values
Use brackets to access an element.

/\

values[i] = 0
element = values[i]

10/3/16 Page 5

Accessing List Elements

e Alistis a sequence of elements, each of which has an integer position
or index

* To access a list element, you specify which index you want to use. That
is done with the subscript operator in the same way that you access
individual characters in a string

Accessing list Replacing list
elements elements
print(values[5]) values[5] = 87

10/3/16 Page 6

Creating Lists/Accessing Elements

0 32 e [0] 32
values = —/ 54 values = J [1] 54

67.5 [2] 67.5
29 (3] 29
35 [4] 35
80 [5] 87
115 [6] 115
44.5 [7] 44.5
100 [8] 100
65 [9] 65
Create a list with ten elements Access a list element

1: Creating a list
values = [32, 54, 67.5, 29, 35, 80, 115, 44.5, 100, 65]

2: Accessing a list element
values[5] = 87

10/3/16 Page 7

Lists Vs. Strings

* Both lists and strings are sequences, and the [] operator is used to
access an element in any sequence

* There are two differences between lists and strings:
 Lists can hold values of any type, whereas strings are sequences of
characters
* Moreover:

* strings are immutable— you cannot change the characters in the
sequence

e Lists are mutable

10/3/16 Page 8

Out of Range Errors

e Qut-of-Range Errors:

e Perhaps the most common error in using lists is accessing a
nonexistent element

values = [2.3, 4.5, 7.2, 1.0, 12.2, 9.0, 15.2, 0.5]
values[8] = 5.4

Error--values has 8 elements,

and the index can range from @ to 7

 If your program accesses a list through an out-of-range index, the
program will generate an exception at run time

10/3/16 Page 9

Determining List Length

* You can use the len() function to obtain the length of the list; that is,
the number of elements:

numElements = len(values)

10/3/16 Page 10

Using The Square Brackets

* Note that there are two distinct uses of the square brackets. When the
square brackets immediately follow a variable name, they are treated

as the subscript operator:

values[4]

 When the square brackets follow an “=“ they create a list:

values = [4]

10/3/16 Page 11

Loop Over the Index Values

* Given the values list that contains 10 elements, we will want to set a
variable, sayi,to0, 1, 2, and soon,upto9

First version (list index used)
for i in range(10) :
print(i, values[i])

Better version (list index used)
for i in range(len(values)) :
print(i, values[i])

Third version: index values not needed (traverse
list elements)
for element in values :

print(element)

10/3/16 Page 12

List References

* Make sure you see the difference between the:
e List variable: The named ‘alias’ or pointer to the list

* List contents: Memory where the values are stored

values = [32, 54, 67.5, 29, 35, 80, 115, 44.5, 100, 65]

List variable List contents
scores =

e [0] 10

Reference [1] 9

[2] /

| _ _ . (3] -f

A list variable contains a reference to the list [4] 5

contents. The reference is the location of the

list contents (in memory). Values

10/3/16 Page 13

List Aliases

* When you copy a list variable into another, both variables refer to the same
list

e The second variable is an alias for the first because both variables
reference the same list

scores = [10, 9, 7, 4, 5]

values = scores # Copying list reference

List contents
A list variable specifies scores = —_—
the location of a list. [0] 10
Copying the reference values = _ e 9
yields a second (2] 7

[3] 4
Irizl:erence to the same R 5 -

10/3/16 Page 14

Modifying Aliased Lists
* You can modify the list through either of the variables:

scores[3] = 10
print(values[3]) # Prints 10

scores = \\\>’
[0]

10

values = [1] 7
[2] 7

[3] 10

[4] 5

10/3/16 Page 15

Reverse Subscripts

e Python, unlike other languages, uses
negative subscripts to provide access
to the list elements in reverse order.

* For example, a subscript of -1
provides access to the last element

last = values[-1]
print("The last element in the
list is", last)

in the list:
* Similarly, values[-2] is the second- o
to-last element. [0l 32 [[-10]
[1] 54 [[-9]
Just because you can do this, does not B 67 I

(3] 29 [-7]
[4] 35 [-6]
(5] 60 =51
N 115 .
(7] 44 [-3]
I 100 .
(9] 65 [=1]

mean you should...

10/3/16 Page 16

List Operations

SECTION 6.2

List Operations

* Appending Elements

* Inserting an Element

* Finding an Element

 Removing an Element

* Concatenation

e Equality / Inequality Testing

* Sum, Maximum, Minimum, and Sorting

* Copying Lists

10/3/16 Page 18

Appending Elements

* Sometimes we may not know the values that will be contained in the
list when it’s created

* In this case, we can create an empty list and add elements to the end

as needed
o Create an empty list
#1 friends =
friends = [] -
#2

e Append "Harry"
friends.append("Harry")

friends = — "Harry"
#3
friends.append("Emily")
friends.append("Bob")

. " e n friends = - "
friends.append("Cari") — 0] "Harry
[1] "Emily"

[21 "Bob"

. 'Cari

10/3/16

e Append additional elements

Inserting an Element

e Sometimes the order in which elements are added to a list is
important

* A new element has to be inserted at a specific position in the list
#1

friends = ["Harry",

" . " " " " - a The newly created list
Emily", "Bob", "Cari"]

friends =
ki T "Harry"

2 o

. . O)
friends.insert(1, TR
n Cindyll)

0 After names.insert(1, "Cindy")

friends = — By New element added at index 1
B "Cindy" N.......
(2] "Emi1l y"<---.:::::jf' Elements at indexes 1-3
[3] "Bob" < woved to create slot
41 "Cari "<t at index 1

10/3/16 Page 20

Finding an Element

* If you simply want to know whether an element is present in a list, use
the in operator:

if "Cindy" in friends :
print("She's a friend")

e Often, you want to know the position at which an element occurs
 The index() method yields the index of the first match

friends = ["Harry", "Emily", "Bob", "Cari", "Emily"]
n = friends.index("Emily") # Sets n to 1

10/3/16 Page 21

