
Chapter 6

Swapping Elements
•  For	example,	you	can	sort	a	list	by	repeatedly	swapping	elements	that	
are	not	in	order	

•  Swap	the	elements	at	posi9ons	i	and	j	of	a	list	values	

•  We’d	like	to	set	values[i]	to	values[j].	But	that	overwrites	the	value	that	
is	currently	stored	in	values[i],	so	we	want	to	save	that	first:	

10/5/16 Page 48

Before moving a new value into a
location (say blue) copy blue’s value
elsewhere and then move black’s value
into blue. Then move the temporary
value (originally in blue) into black.

Swapping Elements (2)
•  Swapping	elements	[1]	and	[3]	

•  This	sets	up	the	scenario	for	the	actual	code	that	will	follows	

10/5/16 Page 49

Swapping Elements (3)
#	Step	2	
temp	=	values[i]	
	
#	Step	3	
values[i]	=	values[j]	

10/5/16 Page 50

Swapping Elements (4)
#	Step	4	
#	temp	contains	values[i]	
values[j]	=	temp	

10/5/16 Page 51

Reading Input
•  It	is	very	common	to	read	input	from	a	user	and	store	it	in	a	list	for	
later	processing.	

10/5/16 Page 52

values	=	[]	
print("Please	enter	values,	Q	to	quit:")	
userInput	=	input("")	
while	userInput.upper()	!=	"Q"	:	
				values.append(float(userInput))	
				userInput	=	input("")	

Please	enter	values,	Q	to	quit:	
32	
29	
67.5	
Q	

Program	execution	

Example One
•  Open	the	file	largest.py	in	Pycharm	

10/5/16 Page 53

Built-In Operations For Lists
•  Use	the	insert()	method	to	insert	a	new	element	at	any	posi9on	in	a	
list	

•  The	in	operator	tests	whether	an	element	is	contained	in	a	list	

•  Use	the	pop()	method	to	remove	an	element	from	any	posi9on	in	a	list	

•  Use	the	remove()	method	to	remove	an	element	from	a	list	by	value	

•  Two	lists	can	be	concatenated	using	the	plus	(+)	operator	
•  Use	the	list()	func9on	to	copy	lists	

10/5/16 Page 54

Built-In Operations For Lists
•  Use	the	slice	operator	(:)	to	extract	a	sublist	or	substrings	

10/5/16 Page 55

Example Problems
•  Open	the	file	largest.py	in	Wing	

•  Modify	the	program	to	find	and	print	both	the	largest	and	smallest	
number	
•  Find	the	largest	number	
•  Print	the	list	

•  Print	the	string	"	<==	largest	value“	next	to	the	largest	number	
•  Find	the	smallest	number	
•  Print	the	list	

•  Print	the	string	"	<==	smallest	value“	next	to	the	smallest	number	

•  Modify	the	program	again	
•  Find	the	largest	number	
•  Find	the	smallest	number	
•  Print	the	list	

•  Print	the	string	"	<==	largest	value“	next	to	the	largest	number	
•  Print	the	string	"	<==	smallest	value“	next	to	the	smallest	number	

10/5/16 Page 56

Using Lists With
Functions
SECTION 6.4

10/5/16 Page 57

Using Lists With Functions
•  A	func9on	can	accept	a	list	as	an	argument	

•  The	following	func9on	visits	the	list	elements,	but	it	does	not	modify	
them	

def	sum(values)	:	
				total	=	0	
				for	element	in	values	:	
								total	=	total	+	element	
				return	total	

10/5/16 Page 58

Modifying List Elements
•  The	following	func9on	mul9plies	all	elements	of	a	list	by	a	given	factor:	

def	multiply(values,	factor)	:	
				for	i	in	range(len(values))	:	
								values[i]	=	values[i]	*	factor	

10/5/16 Page 59

Example: Step 1
•  The	parameter	variables	values	and	factor	are	created	

10/5/16 Page 60

Example: Step 2
•  The	parameter	variables	are	ini9alized	with	the	arguments	that	are	
passed	in	the	call	

•  In	our	case,	values	is	set	to	scores	and	factor	is	set	to	10	
•  Note	that	values	and	scores	are	references	to	the	same	list	

Function call
multiply(scores, 10)

10/5/16 Page 61

Example: Step 3
•  The	func9on	mul9plies	all	list	elements	by	10	

def	multiply(values,	factor)	:	
				for	i	in	range(len(values))	:	
								values[i]	=	values[i]	*	factor	

10/5/16 Page 62

Example: Step 4
•  The	func9on	returns.	Its	parameter	variables	are	removed	

•  However,	scores	s9ll	refers	to	the	list	with	the	modified	elements	

10/5/16 Page 63

Returning Lists From Functions
•  Simply	build	up	the	result	in	the	func9on	and	return	it		

•  In	this	example,	the	squares()	func9on	returns	a	list	of	squares	from	02	
up	to	(n	–	1)2:	

10/5/16 Page 64

def	squares(n)	:	
				result	=	[]	
				for	i	in	range(n)	:	
								result.append(i	*	i)	
				return	result	

Example One
•  Open	the	file	reverse.py	
•  This	program	reads	values	from	the	user,	mul9plies	them	by	10,	and	
prints	them	in	reverse	order	

•  The	readFloats	func9on	returns	a	list	

•  The	mul9ply	func9on	has	a	list	argument,	it	modifies	the	list	elements	

•  The	printReversed	func9on	has	a	list	argument,	but	it	does	not	modify	
the	list	elements	

10/5/16 Page 65

Call By: Value Vs. Reference
•  Call	by	value:	

•  When	the	contents	of	a	variable	that	was	passed	to	a	func9on	can	
never	be	changed	by	that	func9on	

•  Call	by	reference:	
•  Func9on	can	change	the	arguments	of	a	method	call	
•  A	Python	method	can	mutate	the	contents	of	a	list	when	it	receives	
an	reference	to	

10/5/16 Page 66

Tuples
•  A	tuple	is	similar	to	a	list,	but	once	created,	its	contents	cannot	be	
modified	(a	tuple	is	an	immutable	version	of	a	list).	

•  A	tuple	is	created	by	specifying	its	contents	as	a	comma-separated	
sequence.	You	can	enclose	the	sequence	in	parentheses:	

triple	=	(5,	10,	15)	

triple	=	5,	10,	15	

10/5/16 Page 67

•  If	you	prefer,	you	can	omit	the	parentheses:	

Returning Multiple Values
•  It	is	common	prac9ce	in	Python,	however,	to	use	tuples	to	return	
mul9ple	values.	

10/5/16 Page 68

#	Function	definition	
def	readDate()	:	
				print("Enter	a	date:")	
				month	=	int(input("	month:	"))	
				day	=	int(input("	day:	"))	
				year	=	int(input("	year:	"))	
				return	(month,	day,	year)	#	Returns	a	tuple.	
	
#	Function	call:	assign	entire	value	to	a	tuple	
date	=	readDate()	
	
#	Function	call:	use	tuple	assignment:		
(month,	day,	year)		=	readDate()	

Problem Solving
SECTION 6.5: ADAPTING ALGORITHMS

10/5/16 Page 69

Adapting Algorithms
•  Consider	this	example	problem:	You	are	given	the	quiz	scores	of	a	
student.	You	are	to	compute	the	final	quiz	score,	which	is	the	sum	of	
all	scores	aaer	dropping	the	lowest	one	
•  For	example,	if	the	scores	are	
					8				7				8.5				9.5				7					5				10	
•  then	the	final	score	is	50	

10/5/16 Page 70

Adapting a Solution
•  What	steps	will	we	need?	

•  Find	the	minimum	
•  Remove	it	from	the	list	
•  Calculate	the	sum	

•  What	tools	do	we	know?	
•  Finding	the	minimum	value	(Sec9on	6.3.4)	
•  Removing	matches	(Sec9on	6.3.7)	
•  Calcula9ng	the	sum	(Sec9on	6.4)	

•  But	wait…	We	need	to	find	the	POSITION	of	the	minimum	value,	not	
the	value	itself	
•  Hmmm.		Time	to	adapt	

10/5/16 Page 71

Planning a Solution
•  Refined	Steps:	

•  Find	the	minimum	value	

•  Find	its	posi9on	
•  Remove	it	from	the	list	

•  Calculate	the	sum	

•  Let’s	try	it	
•  Find	the	posi9on	of	the	minimum:	

•  At	posi9on	5	

•  Remove	it	from	the	list	
•  Calculate	the	sum	

10/5/16 Page 72

Adapting the code
•  Adapt	smallest	value	to	smallest	posi9on:	

smallestPosition	=	0	
for	i	in	range(1,	len(values))	:	
				if	values[i]	<	values[smallestPosition]	:	
								smallestPosition	=	i	

smallest	=	values[0]	
for	i	in	range(1,	len(values))	:	
				if	values[i]	<	smallest	:	
								smallest	=	values[i]	

Original	algorithm	

Adapted	algorithm	

10/5/16 Page 73

Working Out an Example
Problem	Statement:		The	final	quiz	score	for	a	student	is	computed	by	
adding	up	all	of	the	scores	except	the	lowest	two	

For	example,	if	the	scores	are:	8,	4,	7,	9,	9,	7,	5,	10	

The	final	score	is	50	

We	are	going	develop	the	algorithm	and	write	a	program	to	compute	the	
final	score	

10/5/16 Page 74

Step One
•  We	want	to	start	with	a	high	level	decomposi9on	of	the	problem:	

•  Read	the	data	into	a	list	
•  Process	the	data	
•  Display	the	results	

•  We	will	refer	back	to	the	algorithms	and	list	opera9ons	to	help	guide	
our	design.		Most	of	the	tasks	associated	with	this	problem	can	be	
solved	by	using	or	adap9ng	one	or	more	of	the	algorithms	

•  Our	next	step	in	the	stepwise	refine	is	to	iden9fy	the	step	we	need	to	
process	the	data:	
1.  Read	inputs	
2.  Remove	the	minimum	
3.  Remove	the	minimum	again	
4.  Calculate	the	sum	

10/5/16 Page 75

Step Two
•  Now	we	start	to	determine	the	algorithms	we	need	

•  We	have	working	algorithms	for	reading	the	inputs,	and	calcula9ng	the	
sum	

•  To	remove	the	minimum	value	we	can	find	the	minimum	(we	have	an	
algorithm	for	that)	and	remove	it.			
•  It	is	a	bit	more	efficient	to	find	the	posi9on	of	the	minimum	value	
and	“pop”	that	posi9on	

10/5/16 Page 76

Step Three
•  Plan	the	func9ons	we	need		

•  We	can	compute	the	sum	with	the	exis9ng	sum	func9on	
•  We	need	a	func9on	to	read	the	floa9ng	point	numbers;	readFloats()	
•  We	need	a	func9on	to	remove	the	minimum;	removeMinimum()		
(we	will	call	this	twice)	

•  Our	main	func9on	can	be	structured	as:	
scores	=	readFloats()	
removeMinimum(scores)	
removeMinimum(scores)	
total	=	sum(scores)	
print(“Final	Score	:	“,	total)	

10/5/16 Page 77

Step Four
•  Assemble	and	test	your	code	

•  Review	your	code	and	make	sure	you	handle	the	“normal”	and	
“excep9onal”	cases.	
•  How	do	you	handle	an	empty	list?	
•  A	list	with	a	single	element?	
•  What	if	you	don’t	find	a	smallest	number?	

•  Remember	in	our	problem	statement	we	are	dropping	two	grades	

•  It	is	not	possible	to	compute	a	minimum	if	the	list	is	empty	or	has	a	
single	element	
•  In	that	case	we	should	terminate	the	program	with	an	error	message	
before	apemp9ng	to	call	the	remove	minimum	func9on	

•  Develop	your	test	cases,	and	the	expected	outputs	

10/5/16 Page 78

Testing
•  Develop	your	test	cases,	and	the	expected	outputs	

10/5/16 Page 79

Test	Case	 Expected	Output	 Comment	

8	4	7	8.5	9.5	7	5	10	 50	 Example	case	

8	7	7	7	9	 24	 Make	sure	only	two	
instances	of	the	low	score	
are	removed	

8	7	 0	 Aaer	removing	the	two	low	
scores,	none	remain	

(no	inputs)	 Error	 That	is	not	a	legal	input	

scores.py
•  Open	the	file	scores.py	in	Wing	

10/5/16 Page 80

A Second Example
Problem	Statement:		Our	task	is	to	analyze	whether	a	die	is	fair	by	
coun9ng	how	oaen	each	value	(1,	2,	3,	4,	5,	6)	appears	

Our	input	will	be	a	series	of	die	toss	values	

For	example,	if	the	scores	are:	1,	2,	1,	3,	4,	6,	5,	6	

The	result	is	1:	2;	2:	1;	3:	1;	4:	1;	5:	1;	6:	2	

We	are	going	develop	the	algorithm	and	write	a	program	to	compute	and	
print	the	frequency	of	each	die	value	

10/5/16 Page 81

Step One
•  We	want	to	start	with	a	high	level	decomposi9on	of	the	problem:	

•  Read	the	die	values	
•  Count	how	oaen	the	values	(1,	2,	…,	6)	appear	
•  Print	the	counts	

•  If	we	think	about	this	we	can	simplify;	do	we	need	to	store	the	values?			
•  We	are	only	coun9ng	the	number	of	9mes	each	die	toss	occurs.		If	
we	create	a	list	of	counter	we	can	read	and	then	discard	the	inputs	

•  Our	next	step	in	the	stepwise	refine	is	to	iden9fy	the	steps	we	need	to	
process	the	data:	
1.  Read	input	
2.  For	each	input	value:	
1.  Increment	the	corresponding	counter	

3.  Print	the	counters	

10/5/16 Page 82

Step Two
•  Determine	the	algorithms	we	need:	

•  We	don’t	have	an	algorithm	for	reading	inputs	and	incremen9ng	a	
counter	(yet)	but	it	is	easy	to	build	one	
•  If	we	have	a	list	of	length	6	we	can	simply	

counters[value	–	1]	=	counters[value	–	1]	+	1	

•  To	make	it	easier	was	can	can	not	use	the	[0]	posi9on	and	have	

counters[value]	=	counters[value]	+	1	

•  So,	if	we	define	counters	=	[0]	*	(sides	+	1)	

•  Now	we	can	focus	on	prin9ng	the	counters	

•  We	can	use	a	count	controlled	loop	and	a	format	string	to	print	the	
results	

10/5/16 Page 83

Step Three
•  Plan	the	Func9ons	we	need:	

•  countInputs(sides)														#	will	count	the	inputs	
•  printCounters(counters)				#	will	print	the	counters	

•  The	main	func9on	calls	these	func9ons:	

counters	=	countInputs(6)	
printCounters(counters)	
	

10/5/16 Page 84

Step Four
•  Assemble	and	test	your	program:	

•  When	upda9ng	a	counter	we	have	to	make	sure	we	do	not	generate	an	
boundary	error;	we	have	to	reject	inputs	<	1	and	>	6	

10/5/16 Page 85

Test	Case	 Expected	Output	 Comment	

1	2	3	4	5	6	 1	1	1	1	1	1		 Each	number	occurs	once	

1	2	3	 1	1	1	0	0	0	 Numbers	that	do	not	appear	
have	a	count	of	“0”	

1	2	3	1	2	3	4	 2	2	2	1	0	0	 The	counters	must	be	correct	

No	input	 0	0	0	0	0	0	 All	counters	are	“0”	

0	1	2	3	4	5	6	7	 ERROR	 Inputs	out	of	bounds	

dice.py
•  Open	the	file	dice.py	

10/5/16 Page 86

Discovering Algorithms by
Manipulating Physical
Objects
SECTION 6.6

10/5/16 Page 87

Discovering Algorithms
•  Consider	this	example	problem:		

•  You	are	given	a	list	whose	size	is	an	even	number,	and	you	are	to	
switch	the	first	and	the	second	half	

•  For	example,	if	the	list	contains	the	eight	numbers:					

•  Rearrange	it	to:	

10/5/16 Page 88

Manipulating Objects
•  One	useful	technique	for	discovering	an	algorithm	is	to	manipulate	physical	
objects	

•  Start	by	lining	up	some	objects	to	denote	an	array		
•  Coins,	playing	cards,	or	small	toys	are	good	choices	

•  Visualize	removing	one	object	

10/5/16 Page 89

Manipulating Objects
•  Visualize	inser9ng	one	object	

	

	

•  How	about	swapping	two	coins?	

10/5/16 Page 90

Manipulating Objects
•  Back	to	our	original	problem.	Which	tool(s)	to	use?	

•  How	about	swapping	two	coins?		Four	9mes?	

10/5/16 Page 91

Develop an Algorithm

•  How	can	j	be	set	to	handle	any	number	of	items?	
•  …	if	size	is	8,	j	is	index	4…	

•  And	when	do	we	stop	our	loop?...	

i	 j	

(size	/	2)	

Also	(size	/	2)	

10/5/16 Page 92

•  Pick	two	loca9ons	(indexes)	for	the	first	swap	and	start	a	loop	

swaphalves.py
•  Open	the	file	swaphalves.py	

10/5/16 Page 93

Tables
SECTION 6.7

10/5/16 Page 94

Tables
•  Lists	can	be	used	to	store	data	in	two	dimensions	(2D)	like	a	
spreadsheet	
•  Rows	and	Columns	
•  Also	known	as	a	‘matrix’	

10/5/16 Page 95

Creating Tables
•  Here	is	the	code	for	crea9ng	a	table	that	contains	8	rows	and	3	
columns,	which	is	suitable	for	holding	our	medal	count	data:	

10/5/16 Page 96

Creating Tables (2)
•  This	creates	a	list	in	which	each	element	is	itself	another	list:	

10/5/16 Page 97

Creating Tables (3)
•  Some9mes,	you	may	need	to	create	a	table	with	a	size	that	is	too	large	
to	ini9alize	with	literal	values	

•  First,	create	a	list	that	will	be	used	to	store	the	individual	rows	

table	=	[]	

10/5/16 Page 98

Creating Tables (4)
•  Then	create	a	new	list	using	replica9on	(with	the	number	of	columns	
as	the	size)	for	each	row	in	the	table	and	append	it	to	the	list	of	rows:	

ROWS	=	5	
COLUMNS	=	20	
for	i	in	range(ROWS)	:	
				row	=	[0]	*	COLUMNS	
				table.append(row)	

10/5/16 Page 99

•  The	result	is	a	table	that	consists	of	5	rows	and	20	columns	

Accessing Elements
•  Use	two	index	values:	

•  Row	then	column	

10/5/16 Page 100

for	i	in	range(COUNTRIES):	
				#	Process	the	ith	row	
				for	j	in	range(MEDALS)	:	
								#	Process	the	jth	column	in	the	ith	row	
								print("%8d"	%	counts[i][j],	end="")			
				print()	#	Start	a	new	line	at	the	end	of	the	row	
	

medalCount	=	counts[3][1]	

•  To	print	
•  Use	nested	for	loops	
•  Outer	row(i)	,	inner	column(j)	:	

Locating Neighboring Elements
•  Some	programs	that	work	with	two-dimensional	lists	need	to	locate	
the	elements	that	are	adjacent	to	an	element		

•  This	task	is	par9cularly	common	in	games	

•  You	are	at	loc		i,	j	

•  Watch	out	for	edges!	
•  No	nega9ve	indexes!	
•  Not	off	the	‘board’	

10/5/16 Page 101

Adding Rows and Columns
•  Rows	(x) 																															Columns	(y)	

total	=	0	
for	j	in	range(MEDALS):	
				total	=	total	+	counts[i][j]	
	

total	=	0	
for	i	in	range(MEDALS):	
				total	=	total	+	counts[i][j]	
	

10/5/16 Page 102

Using Tables With Functions
•  When	you	pass	a	table	to	a	func9on,	you	will	want	to	recover	the	
dimensions	of	the	table.	If	values	is	a	table,	then:	

len(values)	is	the	number	of	rows	

len(values[0])	is	the	number	of	columns	

•  For	example,	the	following	func9on	computes	the	sum	of	all	elements	
in	a	table:	

def	sum(values)	:	
				total	=	0	
				for	i	in	range(len(values))	:	
								for	j	in	range(len(values[0]))	:	
												total	=	total	+	values[i][j]	
return	total	

10/5/16 Page 103

Example
•  Open	the	file	medals.py	

10/5/16 Page 104

Summary

10/5/16 Page 105

Summary: Lists
•  A	list	is	a	container	that	stores	a	sequence	of	values	
•  Each	individual	element	in	a	list	is	accessed	by	an	integer	index	i,	using	
the	nota9on	list[i]	

•  A	list	index	must	be	at	least	zero	and	less	than	the	number	of	elements	
in	the	list	

•  An	out-of-range	error,	which	occurs	if	you	supply	an	invalid	list	index,	
can	cause	your	program	to	terminate	

•  You	can	iterate	over	the	index	values	or	the	elements	of	a	list	

10/5/16 Page 106

Summary: Lists
•  A	list	reference	specifies	the	loca9on	of	a	list.	Copying	the	reference	
yields	a	second	reference	to	the	same	list	

•  A	linear	search	inspects	elements	in	sequence	un9l	a	match	is	found	

•  Use	a	temporary	variable	when	swapping	elements	

•  Lists	can	occur	as	func9on	parameters	and	return	values	

10/5/16 Page 107

Summary: Lists
•  When	calling	a	func9on	with	a	list	argument,	the	func9on	receives	a	
list	reference,	not	a	copy	of	the	list	

•  A	tuple	is	created	as	a	comma-separated	sequence	enclosed	in	
parentheses	

•  By	combining	fundamental	algorithms,	you	can	solve	complex	
programming	tasks	

•  You	should	be	familiar	with	the	implementa9on	of	fundamental	
algorithms	so	that	you	can	adapt	them	

•  Discover	algorithms	by	manipula9ng	physical	objects	

10/5/16 Page 108

Summary: Lists
•  Use	a	two-dimensional	list	to	store	tabular	data	

•  Individual	elements	in	a	two-dimensional	list	are	accessed	by	using	
two	index	values,	table[i][j]	

10/5/16 Page 109

Built-In Operations For Lists
•  Use	the	insert()	method	to	insert	a	new	element	at	any	posi9on	in	a	
list	

•  The	in	operator	tests	whether	an	element	is	contained	in	a	list	

•  Use	the	pop()	method	to	remove	an	element	from	any	posi9on	in	a	
list	

•  Use	the	remove()	method	to	remove	an	element	from	a	list	by	value	

•  Two	lists	can	be	concatenated	using	the	plus	(+)	operator	

•  Use	the	list()	func9on	to	copy	lists	

10/5/16 Page 110

Built-In Operations For Lists
•  Use	the	slice	operator	(:)	to	extract	a	sublist	or	substrings	

10/5/16 Page 111

