Converting File Input

e As with the input function, the readline() method can only return
strings

* If the file contains numerical data, the strings must be converted to the
numerical value using the int() or float() function:

value = float(line)

 The newline character at the end of the line is ignored when the string
is converted to a numerical value

10/17/16 Page 15

Writing To A File

* For example, we can write the string "Hello, World!" to our output file
using the statement:

outfile.write("Hello, World!\n")

e Unlike print() when writing text to an output file, you must explicitly
write the newline character to start a new line

* You can also write formatted strings to a file with the write method:

outfile.write("Number of entries: %d\nTotal: %8.2f\n"
% (count, total))

10/17/16 Page 16

Example: File Reading/Writing

e Suppose you are given a text file that contains a sequence of floating-
point values, stored one value per line

* You need to read the values and write them to a new output file,
aligned in a column and followed by their total and average value

 If the input file has the contents
32.0

54.0
67.5
80.25
115.0

10/17/16 Page 17

Example: File Reading/Writing (2)

* The output file will contain
32.00

54.00

67.50

80.25

115.00

Total: 348.75
Average: 69.75

10/17/16 Page 18

Example One

* Open the file total.py

10/17/16 Page 19

Common Error

 Backslashes in File Names

 When using a String literal for a file name with path information,
you need to supply each backslash twice:

infile = open("c:\\homework\\input.txt", "r")

* A si_nﬁle backslash inside a quoted string is the escape character,
which means the next character is interpreted differently (for
example, \n for a newline character)

* When a user supplies a filename into a program, the user should not
type the backslash twice

10/17/16 Page 20

Text Input and Output

SECTION 7.2

10/17/16 21

Text Input and Output

* In the following sections, you will learn how to process text with
complex contents, and you will learn how to cope with challenges that

often occur with real data

e Reading Words Example:

Mary had a little lamb
: for line in inputFile :
TP line = line.rsplit() output Mary
had
a
little
lamb

10/17/16 Page 22

Processing Text Input

* There are times when you want to read input by:
e Each word

* Each line
* Asingle character

* Python provides methods such: read(), split() and strip() for these tasks

Processing text input is required for
almost all types of programs that
interact with the user

10/17/16 Page 23

Text Input and Output

e Python can treat an input file as though it were a container of strings
in which each line comprises an individual string

* For example, the following loop reads all lines from a file and prints
them:

for line in infile
print(line)

* At the beginning of each iteration, the loop variable line is assigned
the value of a string that contains the next line of text in the file

* There is a critical difference between a file and a container:
* Once you read the file you must close it before you can iterate over it again

10/17/16 Page 24

An Example of Reading a File

* We have a file that contains a collection of words; one per line:
spam
and

eggs

10/17/16 Page 25

Removing The Newline (1)

* Recall that each input line ends with a newline (\n) character

* Generally, the newline character must be removed before the input
string is used

 When the first line of the text file is read, the string line contains

S |p a|m \n

10/17/16 Page 26

Removing The Newline (2)

* To remove the newline character, apply the rstrip() method to the
string:

line = line.rstrip()

e This results in the string:

S p a m

10/17/16 Page 27

Character Strip Methods

Table 1 Character Stripping Methods

Method Returns

s.1strip() A new version of s in which white space (blanks, tabs, and

s.Istrip(chars) newlines) 1s removed from the lett (the front) of s. It provided,
characters in the string chars are removed instead of white space.

s.rstrip() Same as 1strip except characters are removed from the right (the

s.rstrip(chars) end) of s.

s.stripQ) Similar to Tstrip and rstrip, except characters are removed from

s.strip(chars) the front and end of s.

10/17/16 Page 28

Character Strip Examples

Table 2 Character Stripping Examples

Statement Result Comment
string = "James\n" Jlalmlels The newline character is stripped
result = string.rstrip() from the end of the string.
string = "James \n" J ame s Blank spaces are also stripped from
result = string.rstrip() the end of the string,.
string = "James \n" Jjlalmlels Only the newline character 1s
result = string.rstrip("\n") strippcd.
name = " Mary " Mar.y The blank spaces are stripped from
result = name.strip() the front and end of the string.
name = " Mary " Mar.y The blank spaces are only stripped
result = name.lstrip() from the front of the string.

10/17/16 Page 29

Reading Words

* Sometimes you may need to read the individual words from a text file

* For example, suppose our input file contains two lines of text
Mary had a little lamb,
whose fleece was white as snow

10/17/16 Page 30

Reading Words (2)

* We would like to print to the terminal, one word per line
Mary

had
a

little

* Because there is no method for reading a word from a file, you must
first read a line and then split it into individual words

line = line.rstrip()
wordlist = line.split()

10/17/16 Page 31

Reading Words (3)

* The split method returns the list of substrings that results from
splitting the string at each blank space

* For example, if line contains the string:

line= M a r vy h a d a Tlarelell e I 20 kmP fh

* It will be split into 5 substrings that are stored in a list in the same
order in which they occur in the string:

wordList = — "Mary"
"had"
T
"Tittle"
"Tamb,"

10/17/16 Page 32

Reading Words (4)

* Notice that the last word in the line contains a comma

 If we only want to print the words contained in the file without
punctuation marks, we can strip those from the substrings using the
rstrip() method introduced in the previous section:

word = word.rstrip(".,?!")

10/17/16 Page 33

Reading Words: Complete Example

inputFile = open("lyrics.txt", "r")
for line in inputFile :
line = line.rstrip()
wordList = line.split()
for word in wordList :
word = word.rstrip(".,?!")

print(word)

inputFile.close()

10/17/16 Page 34

Example Two

* Open the file lyrics.py

10/17/16 Page 35

Additional String Splitting Methods

Table 3 String Splitting Methods

Method Returns

s.split() Returns a list of words from string s. If the string sep is

s.split(sep) provided, it is used as the delimiter; otherwise, any white

s.split(sep, maxsplit) space character is used. If maxsplit is provided, then only that
number of splits will be made, resulting in at most maxsplit + 1
words.

s.rsplit(sep, maxsplit) ~ Same as split except the splits are made starting from the end of
the string instead of from the front.

s.splitlines() Returns a list containing the individual lines of a string split

using the newline character \n as the delimiter.

10/17/16 Page 36

Additional String Splitting Examples

Table 4 String Splitting Examples
Statement Result Comment

String — "a,bc’d" Ilall "bC" lldn

) o The string is split at each comma.
string.split(",")

string = "a b c" "a" "b" "c" The string is split using the blank
string.split() space as the delimiter. Consecutive
blank spaces are treated as one space.

string = "a b c" "a" "b" "" "c" The string is split using the blank
string.split(" ") space as the delimiter. With an
explicit argument, the consecutive
blank spaces are treated as separate

delimiters.
string = "a:bc:d" "a" "bc:d" The string is split into 2 parts starting
string.split(":", 2) from the front. The split 1s made at

the first colon.

string = "a:bc:d" "a:bc" "d" The string is split into 2 parts starting

string.rsplit(":", 2) from the end. The split is made at the
last colon.

10/17/16 Page 37

