
Exception Handling
SECTION 7.4

10/17/16 63

Exception Handling
•  There	are	two	aspects	to	dealing	with	run-4me	program	errors:	

1)  Detec4ng	Errors	
2)  Handling	Errors	

•  The	open	func4on	can	detect	an	a>empt	to	read	from	a	non-existent	
file	
•  The	open	func4on	cannot	handle	the	error	
•  There	are	mul4ple	alterna4ves,	the	func4on	does	not	know	which	is	
the	correct	choice	

•  The	func4on	reports	the	error	to	another	part	of	the	program	to	be	
handled	

•  Excep4on	handling	provides	a	flexible	mechanism	for	passing	control	
from	the	point	of	the	error	to	a	handler	that	can	deal	with	the	error	

10/17/16 Page 64

Detecting Errors
•  What	do	you	do	if	someone	tries	to	withdraw	too	much	money	from	a	
bank	account?	

•  You	can	raise	an	excep4on	
•  When	you	raise	an	excep4on,	execu4on	does	not	con4nue	with	the	
next	statement	
•  It	transfers	to	the	excep-on	handler	

10/17/16

if	amount	>	balance	:	
				raise	ValueError("Amount	exceeds	balance")	

Use	the	raise	statement	
to	signal	an	exception	

Page 65

Exception Classes (a subset)
•  Look	for	an	appropriate	excep4on	

10/17/16 Page 66

Syntax: Raising an Exception

10/17/16 Page 67

Handling Exceptions
•  Every	excep4on	should	be	handled	somewhere	in	the	program	
•  This	is	a	complex	problem	

•  		You	need	to	handle	each	possible	excep4on	and	react	to	it	
appropriately	

•  Handling	recoverable	errors	can	be	done:	
•  Simply:		exit	the	program	
•  User-friendly:		Ask	the	user	to	correct	the	error	

10/17/16 Page 68

Handling Exceptions: Try-Except
•  You	handle	excep4ons	with	the	try/except	statement		

•  Place	the	statement	into	a	loca4on	of	your	program	that	knows	how	to	
handle	a	par4cular	excep4on		

•  The	try	block	contains	one	or	more	statements	that	may	cause	an	
excep4on	of	the	kind	that	you	are	willing	to	handle		

•  Each	except	clause	contains	the	handler	for	an	excep4on	type	

10/17/16 Page 69

Syntax: Try-Except

10/17/16 Page 70

Try-Except: An Example

10/17/16

try	:	
				filename	=	input("Enter	filename:	")	
				infile	=	open(filename,	"r")	
				line	=	infile.readline()	
				value	=	int(line)	
.	.	.	
except	IOError	:	
				print("Error:	file	not	found.")	
except	ValueError	as	exception	:	
				print("Error:",	str(exception))	

Execution	transfers	here	
if	file	cannot	be	opened	

int()	can	raise	a	
ValueError	excep4on	

open()	can	raise	an	IOError	
excep4on	

Execution	transfers	here	

if	the	string	cannot	be	
converted	to	an	int	

If	either	of	these	excep.ons	is	raised,	
the	rest	of	the	instruc.ons	in	the	try	

block	are	skipped	

Page 71

Example
•  If	an	IOError	excep4on	is	raised,	the	except	clause	for	the	IOError	
excep4on	is	executed	

•  If	a	ValueError	excep4on	occurs,	then	second	except	clause	is	executed	
•  If	any	other	excep4on	is	raised	it	will	not	be	handled	by	any	of	the	
except	blocks	

10/17/16 Page 72

Output Messages
•  When	the	body	of	this	handler	is	executed,	it	prints	the	message	
included	with	the	excep4on	

10/17/16

except	ValueError	as	exception	:	
				print("Error:",	str(exception))	

Page 73

•  For	example,	if	the	string	passed	to	the	int()	func4on	was	"35x2",	then	
the	message	included	with	the	excep4on	will	be:	
invalid	literal	for	int()	with	base	10:	'35x2'	

Output Messages (2)
•  To	obtain	the	message,	we	must	have	access	to	the	excep4on	object	
itself		

•  You	can	store	the	excep4on	object	in	a	variable	with	the	as	syntax:	

10/17/16

except	ValueError	as	exception	:	

Page 74

•  When	the	handler	for	ValueError	is	executed,	excep-on	is	set	to	the	
excep4on	object.	In	our	code,	we	then	obtain	the	message	string	by	
calling	str(excep-on)	

Source of Output Messages
•  When	you	raise	an	excep4on,	you	can	provide	your	own	message	
string.	For	example,	when	you	call	

10/17/16

raise	ValueError("Amount	exceeds	balance")	

Page 75

•  The	message	of	the	excep4on,	"Amount	exceeds	balance",	is	the	
string	provided	as	the	argument	to	the	constructor	

The finally Clause
•  The	finally	clause	is	used	when	you	need	to	take	some	ac4on	whether	
or	not	an	excep4on	is	raised		

•  Here	is	a	typical	situa4on	
•  It	is	important	to	always	close	an	output	file	whether	or	not	an	
excep4on	was	raised	(to	ensure	that	all	output	is	wri>en	to	the	file)	

•  Place	the	call	to	close()	inside	a	finally	clause:	

10/17/16

outfile	=	open(filename,	"w")	
try	:	
				writeData(outfile)	
finally	:	
				outfile.close()	

Page 76

Syntax: The Finally Clause

10/17/16 Page 77

Programming Tip
•  Throw	excep4ons	early	

•  When	a	method	detects	a	problem	that	it	cannot	solve,	it	is	be>er	to	
throw	an	excep4on	rather	than	try	to	come	up	with	an	imperfect	fix	

•  Catch	excep4ons	late	
•  Conversely,	a	method	should	only	catch	an	excep4on	if	it	can	really	
remedy	the	situa4on	

•  Otherwise,	the	best	remedy	is	simply	to	have	the	excep4on	
propagate	to	its	caller,	allowing	it	to	be	caught	by	a	competent	
handler	

10/17/16 Page 78

Programming Tip
•  Do	not	use	except	and	finally	in	the	same	try	block	

•  The	finally	clause	is	executed	whenever	the	try	block	is	exited	in	any	
of	three	ways:	
1.	A]er	comple4ng	the	last	statement	of	the	try	block	
2.	A]er	comple4ng	the	last	statement	of	a	except	clause,	if	this	try	
block	caught	an	excep4on	

3.	When	an	excep4on	was	raised	in	the	try	block	and	not	handled	
	

10/17/16

try	

except	

finally	

Page 79

Programming Tip
•  It	is	be>er	to	use	two	(nested)	try	clauses	to	control	the	
flow	
	

10/17/16

try	

except	

finally	

try	:	
		outfile	=	open(filename,	"w")	
		try	:	
				#	Write	output	to	outfile	
		finally	:	
				out.close()		#	Close	resources	
except	IOError	:	
		#	Handle	exception	
	

try	

Page 80

The With Statement
•  Because	a	try/finally	statement	for	opening	and	closing	files	is	so	
common,	Python	has	a	special	shortcut:	

10/17/16

with	open(filename,	"w")	as	outfile	:	
				Write	output	to	outfile	

Page 81

•  This	with	statement	opens	the	file	with	the	given	name,	sets	ou_ile	to	
the	file	object,	and	closes	the	file	object	when	the	end	of	the	
statement	has	been	reached	or	an	excep4on	is	raised	

Handling Input Errors
SECTION 7.6

10/17/16 82

Handling Input Errors
•  File	Reading	Applica4on	Example	

•  Goal:		Read	a	file	of	data	values	
•  First	line	is	the	count	of	values	
•  Remaining	lines	have	values	

•  Risks:	
•  The	file	may	not	exist	

•  The	open()	func4on	will	raise	an	excep4on	when	the	file	does	
not	exist	

•  The	file	might	have	data	in	the	wrong	format	
•  When	there	are	fewer	data	items	than	expected,	or	when	the	
file	doesn’t	start	with	the	count	of	values,	the	program	will	raise	
a	ValueError	excep4on	

•  Finally,	when	there	are	more	inputs	than	expected,	a	
Run4meError	excep4on	should	be	raised	

10/17/16

3
1.45
-2.1
0.05

Page 83

Handling Input Errors: main()
•  Outline	for	method	with	all	excep4on	handling	

10/17/16

done	=	False	
while	not	done	:	
		try:	
				#	Prompt	user	for	file	name	
				data	=	readFile(filename)		#	May	raise	exceptions	
				#	Process	data	
				done	=	true;	
		except	IOError:	
						print("File	not	found.")			
		except	ValueError	:	
						print("File	contents	invalid.")			
		except	RuntimeError	as	error:	
						print("Error:",	str(error))	

Page 84

Handling	Input	Errors:	readFile()	
•  Creates	the	file	object	and	calls	the	readData()	func4on	
•  No	excep4on	handling	(no	except	clauses)	
•  finally	clause	closes	file	in	all	cases	(excep4on	or	not)	

10/17/16

def	readFile(filename)	:	
				inFile	=	open(filename,	"r")	#	May	throw	exceptions		
				try	
						return	readData(inFile)		
				finally	
						in.close()	

Page 85

Handling Input Errors: readData()	
•  No	excep4on	handling	(no	try	or	except	clauses)	
•  raise	creates	an	ValueError	excep4on		and	exits	
•  Run4meError	excep4on	can	occur	

10/17/16

def	readData(inFile)	:	
				line	=	inFile.readline()	
				numberOfValues	=	int(line)	#	May	raise	a	ValueError	exception.	
				data	=	[]	
				for	i	in	range(numberOfValues)	:	
								line	=	inFile.readline()	
								value	=	int(line)	#	May	raise	a	ValueError	exception.	
								data.append(value)	
				#	Make	sure	there	are	no	more	values	in	the	file.	
				line	=	inFile.readline()	
				#	Extra	data	in	file		
				if	line	!=	""	:	
								raise	RuntimeError("End	of	file	expected.")	
				return	data	

Page 86

One Scenario
1. main	calls	readFile	

2. readFile	calls	readData	

3. readData	calls	int	
4. There	is	no	integer	in	the	input,	and	int	raises	a	ValueError	excep4on	

5. readData	has	no	except	clause;	it	terminates	immediately	

6. readFile	has	no	except	clause;	it	terminates	immediately	a]er	
execu4ng	the	finally	clause	and	closing	the	file	

7. The	IOError	except	clause	is	skipped	
8. The	ValueError	except	clause	is	executed	

10/17/16 Page 87

Example Code
•  Open	the	file	analyzedata.py	

10/17/16 Page 88

Summary: File Input/Output
•  When	opening	a	file,	you	supply	the	name	of	the	file	stored	on	disk	
and	the	mode	in	which	the	file	is	to	be	opened	

•  Close	all	files	when	you	are	done	processing	them	

•  Use	the	readline()	method	to	obtain	lines	of	text	from	a	file	

•  Write	to	a	file	using	the	write()	method	or	the	print()	func4on	

10/17/16 Page 89

Summary: Processing Text Files
•  You	can	iterate	over	a	file	object	to	read	the	lines	of	text	in	the	file	
•  Use	the	rstrip()	method	to	remove	the	newline	character	from	a	line	of	
text	

•  Use	the	split()	method	to	split	a	string	into	individual	words	

•  Read	one	or	more	characters	with	the	read()	method	

10/17/16 Page 90

Command Line Arguments
•  Programs	that	start	from	the	command	line	receive	the	command	line	
arguments	in	the	argv	list	defined	in	the	sys	module	

10/17/16 Page 91

Summary: Exceptions (1)
•  To	signal	an	excep4onal	condi4on,	use	the	raise	statement	to	raise	an	
excep4on	object	

•  When	you	raise	an	excep4on,	processing	con4nues	in	an	excep4on	
handler	

•  Place	the	statements	that	can	cause	an	excep4on	inside	a	try	block,	
and	the	handler	inside	an	except	clause	

•  Once	a	try	block	is	entered,	the	statements	in	a	finally	clause	are	
guaranteed	to	be	executed,	whether	or	not	an	excep4on	is	raised	

10/17/16 Page 92

Summary: Exceptions (2)
•  Raise	an	excep4on	as	soon	as	a	problem	is	detected	

•  Handle	it	only	when	the	problem	can	be	handled	

•  When	designing	a	program,	ask	yourself	what	kinds	of	excep4ons	can	
occur	

•  For	each	excep4on,	you	need	to	decide	which	part	of	your	program	
can	competently	handle	it	

10/17/16 Page 93

