Dictionaries
SECTION 8.2

Dictionaries

e Adictionary is a container that keeps associations between keys and
values

* Every key in the dictionary has an associated value
* Keys are unique, but a value may be associated with several keys

* Example (the mapping between the key and value is indicated by an
arrow):

Keys Values

Romeo

Adam
Eve

10/21/16 Page 40

Syntax: Sets and Dictionaries

A set

Set and dictionary
elements are enclosed
in braces.

Dictionaries contain
key/value pairs.

colors = { "Red", "Green", "Blue" }

Key Value
s /

favoriteColors = { "Romeo": "Green",

An empty pair of braces

" _ —
emptyDict = {} is a dictionary.

"Adam" :

"Red" }

10/21/16 Page 41

Creating Dictionaries

e Suppose you need to write a program that looks up the phone number
for a person in your mobile phone’s contact list

* You can use a dictionary where the names are keys and the phone
numbers are values

contacts = { "Fred": 7235591, "Mary": 3841212, "Bob":
3841212, "Sarah": 2213278 }

conracts = e - "Sarah" 2213278
"Bob" 3841212
"Mary" 3841212
"Fred" 7235591

10/21/16 Page 42

Duplicating Dictionaries: Dict ()

* You can create a duplicate copy of a dictionary using the dict()
function:

oldContacts = dict(contacts)

10/21/16 Page 43

Accessing Dictionary Values []

e The subscript operator [] is used to return the value associated with a
key

e The statement

prints 7235591.
print("Fred's number is",
contacts["Fred"])

* Note that the dictionary is not a sequence-type container like a list.
* You cannot access the items by index or position

* Avalue can only be accessed using its associated key

The key supplied to the subscript operator must be
a valid key in the dictionary or
a KeyError exception will be raised

10/21/16 Page 44

Dictionaries: Checking Membership

* To find out whether a key is present in the dictionary, use the in (or
not in) operator:

if "John" in contacts :

print("John's number is", contacts["John"])
else :

print("John is not in my contact list.")

10/21/16 Page 45

Default Keys

e Often, you want to use a default value if a key is not present

 Instead of using the in operator, you can simply call the get ()
method and pass the key and a default value

* The default value is returned if there is no matching key

number = contacts.get("Fred", 411)
print("Dial " + number)

10/21/16 Page 46

Adding/Modifying ltems

e Adictionary is a mutable container

e You can add a new item using the subscript operator [] much as you
would with a list

contacts["John"] = 4578102 #1

* To change the value associated with a given key, set a new value using

the [] operator on an existing key:
0 After contacts["John"] = 4578102

contacts["John"] = 2228102 #2 covscis - em powss | eprpper
"Bob" 3841212
"John" 4578102
"Mary" 3841212
"Fred" 7235591

e After contacts["John"] = 2228102

e W "sarah" 2213278
"Bob" 3841212
“John" 2228102
"Mary" 3841212
"Fred" 7235591

10/21/16 Page 47

Adding New Elements Dynamically

* Sometimes you may not know which items will be contained in the
dictionary when it’s created

* You can create an empty dictionary like this:

favoriteColors = {}

 and add new items as needed:

favoriteColors["Juliet"] = "Blue"
favoriteColors["Adam"] = "Red"
favoriteColors["Eve"] = "Blue"
favoriteColors["Romeo"] = "Green"

10/21/16 Page 48

Removing Elements

* To remove an item from a dictionary, call the pop () method with the
key as the argument:

contacts = { "Fred":
7235591, "Mary": 3841212, O contacts = e

n ", n ", "Bob" 3841212
Bob": 3841212, "Sarah": ol B i
2213278 } "Mary" - 3841212

"Fred" 7235591

* This removes the entire item, both the key and its associated value.

contacts. pOp("Fred") e After contacts.pop("Fred™)
tacts =
contacss =Wl "Sarah" guug 2213278
"Bob" 3841212
"John" 2228102
"Mary" 3841212

10/21/16 Page 49

Removing and Storing Elements

* The pop() method returns the value of the item being removed, so
you can use it or store it in a variable:

fredsNumber = contacts.pop("Fred")

* Note: If the key is not in the dictionary, the pop method raises a
KeyError exception

* To prevent the exception from being raised, you should test for the
key in the dictionary:

if "Fred" in contacts :
contacts.pop("Fred")

10/21/16 Page 50

Traversing a Dictionary

* You can iterate over the individual keys in a dictionary using a for
loop:

print("My Contacts:")
for key in contacts :
print(key)

* The result of this code fragment is shown below:
My Contacts:

Sarah Note that the dictionary stores its
Bob items in an order that is optimized
John for efficiency,

Mary which may not be the order in which
Fred they were added

10/21/16 Page 51

Traversing a Dictionary: In Order

 To iterate through the keys in sorted order, you can use the sorted()
function as part of the for loop :

print("My Contacts:")
for key in sorted(contacts) :
print("%-10s %d" % (key, contacts[key]))

* Now, the contact list will be printed in order by name:
My Contacts:

Bob 3841212

Fred 7235591
John 4578102
Mary 3841212
Sarah 2213278

10/21/16 Page 52

Iterating Dictionaries More Efficiently

* Python allows you to iterate over the items in a dictionary using the
items() method

* This is a bit more efficient than iterating over the keys and then looking
up the value of each key

 The items() method returns a sequence of tuples that contain the
keys and values of all items

* Here the loop variable item will be assigned a tuple that contains
the key in the first slot and the value in the second slot

for item in contacts.items() :
print(item[0], item[1])

10/21/16 Page 53

Storing Data Records

e Data records, in which each record consists of multiple fields, are very
common

* |n some instances, the individual fields of the record were stored in a
list to simplify the storage

e But this requires remembering in which element of the list each field is
stored

* This can introduce run-time errors into your program if you use the
wrong list element when processing the record

* In Python, it is common to use a dictionary to store a data record

10/21/16 Page 54

Dictionaries: Data Records

* You create an item for each data record in which the key is the field
name and the value is the data value for that field

* For example, this dictionary named reconrd stores a single student
record with fields for ID, name, class, and GPA:

record = { "id": 100, "name": "Sally Roberts", "class": 2,
"gpa": 3.78 }

10/21/16 Page 55

Dictionaries: Data Records

* To extract records from a file, we can define a function that reads a
single record and returns it as a dictionary

* The file to be read contains records made up of country names and
population data separated by a colon:

def extractRecord(infile) :
record = {}
line = infile.readline()
if line I= "" :
fields = line.split(":")
record["country"] = fields[0]
record["population”] = int(fields[1])
return record

10/21/16 Page 56

Dictionaries: Data Records

* The dictionary reconrd that is returned has two items, one with the
key "country" and the other with the key "population”

* This function’s result can be used to print all of the records to the
terminal

infile = open("populations.txt", "r")
record = extractRecord(infile)
while len(record) > 0 :
print("%-20s %10d" % (record["country"],
record["population”]))
record = extractRecord(infile)

10/21/16 Page 57

Common Dictionary Operations (1)

Table 2 Common Dictionary Operations

Operation Returns
d = dictQ Creates a new empty dictionary or a duplicate copy
d = dict(c) of dictionary c.
d={} Creates a new empty dictionary or a dictionary that
d = {k1: v1, ky: v, ..., ky: v,} contains the initial items provided. Each item consists

of a key (k) and a value (v) separated by a colon.

len(d) Returns the number of items in dictionary d.

key in d Determines if the key is in the dictionary.

key not in d

dlkey]l = value Adds a new key/value item to the dictionary if the

key does not exist. If the key does exist, it modifies
the value associated with the key.

x = dlkey] Returns the value associated with the given key. The
key must exist or an exception is raised.

10/21/16 Page 58

Common Dictionary Operations (2)

Table 2 Common Dictionary Operations

d.get(key, defaunlt) Returns the value associated with the given key, or the
detault value if the key is not present.

d .pop(key) Removes the key and its associated value from the
dictionary that contains the given key or raises an
exception if the key is not present.

d.values() Returns a sequence containing all values of the
dictionary.

10/21/16 Page 59

