Complex Structures
SECTIONS 8.3

10/24/16

60

Complex Structures

* Containers are very useful for storing collections of values

* In Python, the list and dictionary containers can contain any type of
data, including other containers

 Some data collections, however, may require more complex structures.

* In this section, we explore problems that require the use of a
complex structure

10/24/16 Page 61

A Dictionary of Sets

* The index of a book specifies on which pages each term occurs

e Build a book index from page numbers and terms contained in a text
file with the following format:
6:type
7:example
7 :index
/:program
8:type
10:example
11:program
20:set

10/24/16 Page 62

A Dictionary of Sets

* The file includes every occurrence of every term to be included in the
index and the page on which the term occurs

* If a term occurs on the same page more than once, the index includes
the page number only once

10/24/16 Page 63

A Dictionary of Sets

* The output of the program should be a list of terms in alphabetical
order followed by the page numbers on which the term occurs,
separated by commas, like this:

example: 7, 10
index: 7
program: 7, 11
type: 6, 8
set: 20

10/24/16 Page 64

A Dictionary of Sets

e Adictionary of sets would be appropriate for this problem

e Each key can be a term and its corresponding value a set of the page
numbers where it occurs

7

— J -
entries =
"example" > 7
"index"
rrogran A C
type 7
llsetll x
6 8
20

10/24/16 Page 65

Why Use a Dictionary?

* The terms in the index must be unique

* By making each term a dictionary key, there will be only one
instance of each term.

* The index listing must be provided in alphabetical order by term

* We can iterate over the keys of the dictionary in sorted order to
produce the listing

* Duplicate page numbers for a term should only be included once

* By adding each page number to a set, we ensure that no duplicates
will be added

10/24/16 Page 66

Dictionary Sets: Buildindex.py

def main() :
Create an>cn1pt\'dicth)nar}:
indexEntries = {}

5
6
7
8
9 # Extract the data from the text file.

10 infile = open("indexdata.txt”, "r")

11 fields = extractRecord(infile)

12 while len(fields) > 0 :

13 addWord(indexEntries, fields[1], fields[0])
14 fields = extractRecord(infile)

15

16

17

18

19

infile.close()

Print the index listing.
printIndex(indexEntries)

10/24/16 Page 67

Dictionary Sets: Buildindex.py

26 def extractRecord(infile) :
27 line = infile.readline()

28 1f Tine = "" :

29 fields = line.split(":")
30 page = 1nt(fields[0])

31 term = fields[1].rstripQ)
32 return [page, term]

33 else :

34 return []

10/24/16 Page 68

Dictionary Sets: Buildindex.py

41 def addWord(entries, term, page) :

42 # If the term is already in the dictionary, add the page to the set.

43 1f term 1n entries :

A4 pageSet = entries[term]

45 pageSet.add(page)

46

47 # Otherwise, create a new set that contains the page and add an entry.
48 else :

49 pageSet = set([page])

50 entries[term] = pageSet

10/24/16 Page 69

Dictionary Sets: Buildindex.py

56 for key 1n sorted(entries) :

57 print(key, end=" ")

58 pageSet = entries[key]

59 first = True

60 for page 1n sorted(pageSet) :
61 1T first

62 print(page, end="")
63 first = False

64 else :

65 print(","”, page, end="")
66

67 print()

10/24/16 Page 70

A Dictionary of Lists

A common use of dictionaries in Python is to store a collection of lists
in which each list is associated with a unique name or key

* For example, consider the problem of extracting data from a text file
that represents the yearly sales of different ice cream flavors in
multiple stores of a retail ice cream company

* vanilla:8580.0:7201.25:8900.0
 chocolate:10225.25:9025.0:9505.0

* rocky road:6700.1:5012.45:6011.0

e strawberry:9285.15:8276.1:8705.0
 cookie dough:7901.25:4267.0:7056.5

10/24/16 Page 71

A Dictionary of Lists

 The data is to be processed to produce a report similar to the

following:
chocolate 10225.25
cookie dough 7901.25
rocky road 6700.10
strawberry 9285.15
vanilla 8580.00
42691.75

9025.00
4267.00
5012.45
8276.10
7201.25

33781.80

* Asimple list is not the best choice:

* The entries consist of strings and floating-point values, and they
have to be sorted by the flavor name

10/24/16 Page 72

9505.00
7056.50
6011.00
8705.00
8900.00

40177.50

28755.25
19224.75
17723.55
26266.25
24681.25

A Dictionary of Lists

e With this structure, each row of the table is an item in the dictionary

 The name of the ice cream flavor is the key used to identify a particular
row in the table.

* The value for each key is a list that contains the sales, by store, for that
flavor of ice cream

[0] 6700.10 [1] 5012.45 [2] 7056.50
salesData = J
= "rocky road"

>0 9285.15 [EiESE 8276.10 @il 8705 .00
"strawberry"

"vanilla" —_
[0] 8580.00 [1] 7201.25 [2] 8900.00

"cookie dough"
"chocolate" ——\
[0] 7901.25 [1] 4267.00 [2] 7056.50

BN 10225. 258 9025.00 iy 9505.00

10/24/16 Page 73

Example: Icecreamsales.py

6 def main(Q) :
/ salesData = readData("icecream.txt")
8 printReport(salesData)

10/24/16 Page 74

Example: Icecreamsales.py

14 def readData(filename) :

15 # Create an empty dictionary.
16 salesData = {}

17

18 infile = open(filename, "r")
19

20 # Read each record from the file.
21 for Tine in 1infile :

22 fields = lTine.split(":")

23 flavor = fields[0]

24 salesData[flavor] = buildList(fields)
25

26 infile.close()

27 return salesData

10/24/16 Page 75

Example: Icecreamsales.py

33 def buildList(fields) :
34 storeSales = []

35 for 1 in range(l, lTen(fields)) :

36 sales = float(fields[1])
gg storeSales.append(sales)
39 return storeSales

10/24/16 Page 76

Example: Icecreamsales.py

44 def printReport(salesData) :

45 # Find the number of stores as the length of the longest store sales list.
46 numStores =

47 for storeSales in salesData.values() :
48 1f len(storeSales) > numStores :
49 numStores = len(storeSales)

50

51 # Create a list of store totals.

52 storeTotals = [0.0] * numStores

53

54 # Print the flavor sales.

55 for flavor in sorted(salesData) :

56 print("%-15s" % flavor, end="")

57

10/24/16 Page 77

Example: Icecreamsales.py

58 flavorTotal =

59 storeSales = salesData[flavor]

60 for 1 in range(len(storeSales)) :

61 sales = storeSales[1]

62 flavorTotal = flavorTotal + sales

63 storeTotals[1] = storeTotals[i1] + sales
64 print("%10.2f" % sales, end="")

65

66 print("%15.2f" % flavorTotal)

67

68 # Print the store totals.

69 print("%15s" % " ", end="")

70 for 1 in range(numStores) :

71 print("%10.2f" % storeTotals[1], end="")
72 print()

10/24/16 Page 78

Modules
SPLITTING OUR PROGRAMS INTO PIECES

10/24/16

79

Modules

* When you write small programs, you can place all of your code into a
single source file

 When your programs get larger or you work in a team, that situation
changes

* You will want to structure your code by splitting it into separate source
files (a “module”)

10/24/16 Page 80

Reasons for Employing Modules

* Large programs can consist of hundreds of functions that become
difficult to manage and debug if they are all in one source file

e By distributing the functions over several source files and grouping
related functions together, it becomes easier to test and debug the

various functions

 The second reason becomes apparent when you work with other
programmers in a team

* It would be very difficult for multiple programmers to edit a single
source file simultaneously

* The program code is broken up so that each programmer is solely
responsible for a unique set of files

10/24/16 Page 81

Typical Division Into Modules

* Large Python programs typically consist of a driver module and one or
more supplemental modules

* The driver module contains the main() function or the first executable
statement if no main function is used

* The supplemental modules contain supporting functions and constant
variables

10/24/16 Page 82

Modules Example

* Splitting the dictionary of lists into modules

 The tabulardata.py module contains functions for reading the data
from a file and printing a dictionary of lists with row and column totals

 The salesreport.py module is the driver (or main) module that
contains the main function

* By splitting the program into two modules, the functions in the
tabulardata.py module can be reused in another program that
needs to process named lists of numbers

10/24/16 Page 83

Using Code That are in Modules

* To call a function or use a constant variable that is defined in a user
module, you can first import the module in the same way that you
imported a standard library module:

from tabulardata import readData, printReport

* However, if a module defines many functions, it is easier to use the
form:

import tabulardata

* With this form, you must prepend the name of the module to the
function name:

tabulardata.printReport(salesData)

10/24/16 Page 84

Review

10/24/16

85

Python Sets

A set stores a collection of unique values
e Asetis created using a set literal or the set function

* The in operator is used to test whether an element is a member of a
set

 New elements can be added using the add() method
e Use the discard() method to remove elements from a set

* The issubset () method tests whether one set is a subset of another
set

10/24/16 Page 86

Python Sets

* The union() method produces a new set that contains the elements in
both sets

 The intersection() method produces a new set with the elements
that are contained in both sets

* The difference() method produces a new set with the elements that
belong to the first set but not the second

* The implementation of sets arrange the elements in the set so that
they can be located quickly

10/24/16 Page 87

Python Dictionaries

A dictionary keeps associations between keys and values

Use the [] operator to access the value associated with a key

The in operator is used to test whether a key is in a dictionary

New entries can be added or modified using the [] operator

Use the pop () method to remove a dictionary entry

10/24/16 Page 88

Complex Structures

 Complex structures can help to better organize data for processing

* The code of complex programs is distributed over multiple files

10/24/16 Page 89

