
Complex Structures 
SECTIONS 8.3 

10/24/16 60 



Complex Structures 
•  Containers	are	very	useful	for	storing	collec2ons	of	values	

•  In	Python,	the	list	and	dic2onary	containers	can	contain	any	type	of	
data,	including	other	containers	

•  Some	data	collec2ons,	however,	may	require	more	complex	structures.	
•  In	this	sec2on,	we	explore	problems	that	require	the	use	of	a	
complex	structure	

10/24/16 Page 61 



A Dictionary of Sets 
•  The	index	of	a	book	specifies	on	which	pages	each	term	occurs	

•  Build	a	book	index	from	page	numbers	and	terms	contained	in	a	text	
file	with	the	following	format:	
6:type	
7:example	
7:index	
7:program	
8:type	
10:example	
11:program	
20:set	

10/24/16 Page 62 



A Dictionary of Sets 
•  The	file	includes	every	occurrence	of	every	term	to	be	included	in	the	
index	and	the	page	on	which	the	term	occurs		

•  If	a	term	occurs	on	the	same	page	more	than	once,	the	index	includes	
the	page	number	only	once	

10/24/16 Page 63 



A Dictionary of Sets 
•  The	output	of	the	program	should	be	a	list	of	terms	in	alphabe2cal	
order	followed	by	the	page	numbers	on	which	the	term	occurs,	
separated	by	commas,	like	this:	
example:	7,	10	
index:	7	
program:	7,	11	
type:	6,	8	
set:	20	

10/24/16 Page 64 



A Dictionary of Sets 
•  A	dic2onary	of	sets	would	be	appropriate	for	this	problem	

•  Each	key	can	be	a	term	and	its	corresponding	value	a	set	of	the	page	
numbers	where	it	occurs	

10/24/16 Page 65 



Why Use a Dictionary? 
•  The	terms	in	the	index	must	be	unique	

•  By	making	each	term	a	dic2onary	key,	there	will	be	only	one	
instance	of	each	term.	

•  The	index	lis2ng	must	be	provided	in	alphabe2cal	order	by	term	
•  We	can	iterate	over	the	keys	of	the	dic2onary	in	sorted	order	to	
produce	the	lis2ng		

•  Duplicate	page	numbers	for	a	term	should	only	be	included	once		
•  By	adding	each	page	number	to	a	set,	we	ensure	that	no	duplicates	
will	be	added	

10/24/16 Page 66 



Dictionary Sets: Buildindex.py	

10/24/16 Page 67 



Dictionary Sets: Buildindex.py 

10/24/16 Page 68 



Dictionary Sets: Buildindex.py 

10/24/16 Page 69 



Dictionary Sets: Buildindex.py 

10/24/16 Page 70 



A Dictionary of Lists 
•  A	common	use	of	dic2onaries	in	Python	is	to	store	a	collec2on	of	lists	
in	which	each	list	is	associated	with	a	unique	name	or	key	

•  For	example,	consider	the	problem	of	extrac2ng	data	from	a	text	file	
that	represents	the	yearly	sales	of	different	ice	cream	flavors	in	
mul2ple	stores	of	a	retail	ice	cream	company	
•  vanilla:8580.0:7201.25:8900.0	
•  chocolate:10225.25:9025.0:9505.0	
•  rocky	road:6700.1:5012.45:6011.0	
•  strawberry:9285.15:8276.1:8705.0	
•  cookie	dough:7901.25:4267.0:7056.5	

10/24/16 Page 71 



A Dictionary of Lists 
•  The	data	is	to	be	processed	to	produce	a	report	similar	to	the	
following:	

10/24/16 Page 72 

•  A	simple	list	is	not	the	best	choice:	
•  The	entries	consist	of	strings	and	floa2ng-point	values,	and	they	
have	to	be	sorted	by	the	flavor	name	



A Dictionary of Lists 
•  With	this	structure,	each	row	of	the	table	is	an	item	in	the	dic2onary		

•  The	name	of	the	ice	cream	flavor	is	the	key	used	to	iden2fy	a	par2cular	
row	in	the	table.	

•  The	value	for	each	key	is	a	list	that	contains	the	sales,	by	store,	for	that	
flavor	of	ice	cream	

10/24/16 Page 73 



Example: Icecreamsales.py 

10/24/16 Page 74 



Example: Icecreamsales.py 

10/24/16 Page 75 



Example: Icecreamsales.py 

10/24/16 Page 76 



Example: Icecreamsales.py 

10/24/16 Page 77 



Example: Icecreamsales.py 

10/24/16 Page 78 



Modules 
SPLITTING OUR PROGRAMS INTO PIECES 

10/24/16 79 



Modules 
•  When	you	write	small	programs,	you	can	place	all	of	your	code	into	a	
single	source	file	

•  When	your	programs	get	larger	or	you	work	in	a	team,	that	situa2on	
changes		

•  You	will	want	to	structure	your	code	by	spliNng	it	into	separate	source	
files	(a	“module”)	

	

10/24/16 Page 80 



Reasons for Employing Modules 
•  Large	programs	can	consist	of	hundreds	of	func2ons	that	become	
difficult	to	manage	and	debug	if	they	are	all	in	one	source	file	
•  By	distribu2ng	the	func2ons	over	several	source	files	and	grouping	
related	func2ons	together,	it	becomes	easier	to	test	and	debug	the	
various	func2ons	

•  The	second	reason	becomes	apparent	when	you	work	with	other	
programmers	in	a	team	
•  It	would	be	very	difficult	for	mul2ple	programmers	to	edit	a	single	
source	file	simultaneously	

•  The	program	code	is	broken	up	so	that	each	programmer	is	solely	
responsible	for	a	unique	set	of	files	

10/24/16 Page 81 



Typical Division Into Modules 
•  Large	Python	programs	typically	consist	of	a	driver	module	and	one	or	
more	supplemental	modules		

•  The	driver	module	contains	the	main()	func2on	or	the	first	executable	
statement	if	no	main	func2on	is	used	

•  The	supplemental	modules	contain	suppor2ng	func2ons	and	constant	
variables	

10/24/16 Page 82 



Modules Example 
•  SpliNng	the	dic2onary	of	lists	into	modules	

•  The	tabulardata.py	module	contains	func2ons	for	reading	the	data	
from	a	file	and	prin2ng	a	dic2onary	of	lists	with	row	and	column	totals		

•  The	salesreport.py	module	is	the	driver	(or	main)	module	that	
contains	the	main	func2on	

•  By	spliNng	the	program	into	two	modules,	the	func2ons	in	the	
tabulardata.py	module	can	be	reused	in	another	program	that	
needs	to	process	named	lists	of	numbers	

10/24/16 Page 83 



Using Code That are in Modules 
•  To	call	a	func2on	or	use	a	constant	variable	that	is	defined	in	a	user	
module,	you	can	first	import	the	module	in	the	same	way	that	you	
imported	a	standard	library	module:	

from	tabulardata	import	readData,	printReport	

import	tabulardata	

tabulardata.printReport(salesData)	

10/24/16 Page 84 

•  However,	if	a	module	defines	many	func2ons,	it	is	easier	to	use	the	
form:	

•  With	this	form,	you	must	prepend	the	name	of	the	module	to	the	
func2on	name:	



Review 

10/24/16 85 



Python Sets 
•  A	set	stores	a	collec2on	of	unique	values	
•  A	set	is	created	using	a	set	literal	or	the	set	func2on	

•  The	in	operator	is	used	to	test	whether	an	element	is	a	member	of	a	
set	

•  New	elements	can	be	added	using	the	add()	method	

•  Use	the	discard()	method	to	remove	elements	from	a	set	

•  The	issubset()	method	tests	whether	one	set	is	a	subset	of	another	
set	

10/24/16 Page 86 



Python Sets 
•  The	union()	method	produces	a	new	set	that	contains	the	elements	in	
both	sets	

•  The	intersection()	method	produces	a	new	set	with	the	elements	
that	are	contained	in	both	sets	

•  The	difference()	method	produces	a	new	set	with	the	elements	that	
belong	to	the	first	set	but	not	the	second	

•  The	implementa2on	of	sets	arrange	the	elements	in	the	set	so	that	
they	can	be	located	quickly	

10/24/16 Page 87 



Python Dictionaries 
•  A	dic2onary	keeps	associa2ons	between	keys	and	values	
•  Use	the	[]	operator	to	access	the	value	associated	with	a	key	

•  The	in	operator	is	used	to	test	whether	a	key	is	in	a	dic2onary	
•  New	entries	can	be	added	or	modified	using	the	[]	operator	

•  Use	the	pop()	method	to	remove	a	dic2onary	entry	

10/24/16 Page 88 



Complex Structures 
•  Complex	structures	can	help	to	beXer	organize	data	for	processing	

•  The	code	of	complex	programs	is	distributed	over	mul2ple	files	

10/24/16 Page 89 


