Instance Variables

* An object stores its data in instance variables

* An instance of a class is an object of the class

* In our example, each Counter object has a single instance variable
named value

* For example, if concertCounter and boardingCounter are two

objects of the Counter class, then each object has its own value
variable

concertCounter — i PN Counter

_value =

Instance

) variables
boardingCounter

— >~ Counter

_value =

10/28/16

15

Instance Variables

* Instance variables are part of the implementation details that should
be hidden from the user of the class

* With some programming languages an instance variable can only be
accessed by the methods of its own class

* The Python language does not enforce this restriction

* However, the underscore indicates to class users that they should
not directly access the instance variables

10/28/16 16

Class Methods

 The methods provided by the class are defined in the class body

* The click() method advances the value instance variable by 1

def click(self) :
self. value = self. value + 1

* A method definition is very similar to a function with these exceptions:
A method is defined as part of a class definition

* The first parameter variable of a method is called self

10/28/16 17

Class Methods and Attributes

* Note how the click() method increments the instance variable
_value

* Which instance variable? The one belonging to the object on which the
method is invoked

* In the example below the call to click() advances the value
variable of the concertCounter object

* No argument was provided when the click() method was called
even though the definition includes the sel f parameter variable

* The self parameter variable refers to the object on which the
method was invoked concertCounter in this example

concertCounter.click()

10/28/16 18

Example of Encapsulation

* The getValue() method returns the current _value:

def getValue(self) :
return self. value

* This method is provided so that users of the Counter class can find
out how many times a particular counter has been clicked

* A class user should not directly access any instance variables

e Restricting access to instance variables is an essential part of
encapsulation

10/28/16

19

Complete Simple Class Example

6 from counter import Counter
7
8 tally = Counter() 7 class Counter :
9 tally.reset() 8 ## Gets the current value of this counter.
10 tally.click() 9 # @return the current value
1T tally.clickQ 10 #
12 11 def getValue(self) :
12 return self._value
13 result = tally.getValue() ;3 -
14 print("Value:", result) 14 ## Advances the value of this counter by 1.
15 15 #
16 tally.clickQ 16 def click(self) :
I result = taHy.getVa1ue() :g self. value = self. value +
18 print("Value:", result) 19 ## Resets the value of this counter to O.
20 #
21 def reset(self) :
22 self. value =
Program execution
Value: 2
Value: 3

10/28/16 20

5. What would happen if you didn’t call reset immediately after constructing the ta11y object?

6. Consider a change to the implementation of the counter. Instead of using an integer counter, we use a
string of | characters to keep track of the clicks, just as a human might do.

class Counter :
def reset(self) :
self. strokes

def click(self) :
self. strokes = self._strokes +

How do you implement the getvalue method with this data representation?

7. Suppose another programmer has used the original Counter class. What changes does that program-
mer have to make in order to use the modified class from Self Check 6?

8. Suppose you use a class Clock with instance variables _hours and _minutes. How can you access
these variables in your program?

Public Interface of a Class

* When you design a class, start by specifying the public interface of the
new class

* What tasks will this class perform?
 What methods will you need?

 What parameters will the methods need to receive?

10/28/16

22

Example Public Interface

 Example: A Cash Register Class

sk | Method

Add the price of an item addltem(price)
Get the total amount owed getTotal()

Get the count of items purchased getCount()
Clear the cash register for a new sale clear()

e Since the ‘self’ parameter is required for all methods it was
excluded for simplicity

10/28/16

23

Writing the Public Interface

class CashRegister : Class comments document the

class and the behavior of each
method

def addltem(self, price) : The method declarations make up the

public interface of the class

def getTotal(self):

The data and method bodies make up the
private implementation of the class

10/28/16 24

Using the Class

After defining the class we can now construct an object:

registerl = CashRegister()

Constructs a CashRegister object

This statement defines the registerl variable and initializes it with a
reference to a new CashRegister object

registerl = ~— >~ CashRegister

10/28/16 25

Using Methods

 Now that an object has been constructed, we are ready to invoke a
method:

registerl.addItem(1.95) # Invokes a method.

10/28/16

26

Accessor and Mutator Methods

* Many methods fall into two categories:
1) Accessor Methods: 'get' methods

e Asks the object for information without changing it
* Normally returns the current value of an attribute

def getTotal(self):
def getCount(self):

2) Mutator Methods: 'set’' methods
* Changes values in the object

* Usually take a parameter that will change an instance variable

def addItem(self, price):
def clear(self):

10/28/16

27

Instance Variables of Objects

* Each object of a class has a separate set of instance variables

registerl = BN CashRegister

Il
—_

— itemCount
The values stored in instance

variables make up the state of

the object. Accessible

only by CashRegister
instance methods

totalPrice 1.95

register2 = D CashRegister

Il
W

itemCount

totalPrice 17.25

10/28/16 28

Designing the Data Representation

* An object stores data in instance variables
* Variables declared inside the class

* All methods inside the class have access to them
e Can change or access them
 What data will our CashRegister methods need?

____ Task | Method | DataNeeded

Add the price of an item addltem(price) total, count
Get the total amount owed getTotal() total

Get the count of items purchased getCount() count
Clear cash register for a new sale clear() total, count

An object holds instance variables that are accessed by methods

10/28/16 29

Programming Tip 9.1

e All instance variables should be private and most methods should be
public

e Although most object-oriented languages provide a mechanism to
explicitly hide or protect private members from outside access,
Python does not

* Itis common practice among Python programmers to use names that
begin with a single underscore for private instance variables and
methods

* The single underscore serves as a flag to the class user that those
members are private

10/28/16

30

Programming Tip 9.1

You should always use encapsulation, in which all instance variables
are private and are only manipulated with methods

Typically, methods are public

* However, sometimes you have a method that is used only as a
helper method by other methods

* In that case, you should identify the helper method as private by
using a name that begins with a single underscore

10/28/16

31

Constructors

e A constructor is a method that initializes instance variables of an object
It is automatically called when an object is created

Calling a method that matches the name of the class
invokes the constructor
register = CashRegister()

 Python uses the special name _ _init _ for the constructor
because its purpose is to initialize an instance of the class:

def _init (self) :
self. itemCount = ©
self. totalPrice = ©

10/28/16 32

Default and Named Arguments

* Only one constructor can be defined per class

e But you can a define constructor with default argument values that
simulate multiple definitions

class BankAccount :
def init (self, initialBalance = 0.0) :
self. balance = initialBalance

* If no value is passed to the constructor when a BankAccount object
is created the default value will be used

joesAccount = BankAccount() # Balance is set to ©

10/28/16 33

Default and Named Arguments

* If a value is passed to the constructor that value will be used instead
of the default one

joesAccount = BankAccount(499.95)
Balance is set to 499.95

e Default arguments can be used in any method and not just
constructors

10/28/16

34

Syntax: Constructors

Syntax class ClassName :
def __init__(self, pammeterNamel, pammeterNamez, s 2)
constructor body

The special name __init__ class BankAccount :
is used to define a constructor, —— def __init__(self) : There can be only one constructor
self._balance = 0.0 per class. But a constructor can contain

default arguments to provide alternate

. forws for creating objects.
A constructor defines

and initializes the
instance variables.

class BankAccount :
def __init__(self, initialBalance = 0.0) :
self. _balance = initialBalance

10/28/16 35

Constructors: Self

* The first parameter variable of every constructor must be self

 When the constructor is invoked to construct a new object, the self
parameter variable is set to the object that is being initialized

Refers to the
object being

4(*4———”" initialized
def _init (self)

self. itemCount = ©
self. totalPrice = ©

register = CashRegister()

1

After the constructor ends this is a
reference to the newly created object

10/28/16 36

Object References

register = CashRegister()

\ After the constructor ends this is a reference to the

newly created object

* This reference then allows methods of the object to be invoked

print("Your total $", register.getTotal())

Call the method
through the
reference

10/28/16

37

Common Error 9.1 (1)

e After an object has been constructed, you should not directly call the
constructor on that object again:

registerl = CashRegister()
registerl. _init () # Bad style

10/28/16

38

Common Error 9.1 (2)

e The constructor can set a new CashRegister object to the cleared
state, but you should not call the constructor on an existing object.
Instead, replace the object with a new one:

CashRegister()
CashRegister() # OK

registerl
registerl

In general, you should never call a Python method that starts with a
double underscore. The are intended for specific internal purposes
(in this case, to initialize a newly created object).

10/28/16 39

Implementing Methods

* Implementing a method is very similar to implementing a function
except that you access the instance variables of the object in the
method body

def addItem(self, price):
self. itemCount = self. itemCount + 1
self. totalPrice = self. totalPrice + price

Tk | Method

Add the price of an item addltem(price)
Get the total amount owed getTotal()
Get the count of items purchased getCount()

Clear the cash register for a new sale clear()

10/28/16

40

Syntax: Instance Methods

 Use instance variables inside methods of the class

e Similar to the constructor, all other instance methods must include
the self parameter as the first parameter

* You must specify the self implicit parameter when using instance
variables inside the class

Syntax class ClassName :

def methodName(self, parameterName,, parameterName,, . . .) :

method body

Every wmethod wust include the special
class CashRegister :/ sef parameter variable. It is automatically
- e assigned a value when the method is called.
def addItem(self, price) :
self._itemCount = self._itemCount + 1

Instance variables are% self._totalPrice = self._totalPrice + price

referenced using the S Local variable
self paraweter.

10/28/16 41

