
15 

Instance Variables 
•  An	object	stores	its	data	in	instance	variables	
•  An	instance	of	a	class	is	an	object	of	the	class	

•  In	our	example,	each	Counter	object	has	a	single	instance	variable	
named	_value	

•  For	example,	if	concertCounter	and	boardingCounter	are	two	
objects	of	the	Counter	class,	then	each	object	has	its	own	_value	
variable	

10/28/16 



16 

Instance Variables 
•  Instance	variables	are	part	of	the	implementa<on	details	that	should	
be	hidden	from	the	user	of	the	class	
•  With	some	programming	languages	an	instance	variable	can	only	be	
accessed	by	the	methods	of	its	own	class	

•  The	Python	language	does	not	enforce	this	restric<on	
•  However,	the	underscore	indicates	to	class	users	that	they	should	
not	directly	access	the	instance	variables	

10/28/16 



17 

Class Methods 
•  The	methods	provided	by	the	class	are	defined	in	the	class	body	

•  The	click()	method	advances	the	_value	instance	variable	by	1	

	 def	click(self)	:	
				self._value	=	self._value	+	1	

10/28/16 

•  A	method	defini<on	is	very	similar	to	a	func<on	with	these	excep<ons:	
•  A	method	is	defined	as	part	of	a	class	defini<on	
•  The	first	parameter	variable	of	a	method	is	called	self	



18 

Class Methods and Attributes 
•  Note	how	the	click()	method	increments	the	instance	variable	
_value		

•  Which	instance	variable?	The	one	belonging	to	the	object	on	which	the	
method	is	invoked	
•  In	the	example	below	the	call	to	click()	advances	the	_value	
variable	of	the	concertCounter	object		

•  No	argument	was	provided	when	the	click()	method	was	called	
even	though	the	defini1on	includes	the	self	parameter	variable	

•  The	self	parameter	variable	refers	to	the	object	on	which	the	
method	was	invoked	concertCounter	in	this	example	

concertCounter.click()	

10/28/16 



19 

Example of Encapsulation 
•  The	getValue()	method	returns	the	current	_value:	

def	getValue(self)	:	
				return	self._value	

10/28/16 

•  This	method	is	provided	so	that	users	of	the	Counter	class	can	find	
out	how	many	<mes	a	par<cular	counter	has	been	clicked	

•  A	class	user	should	not	directly	access	any	instance	variables	
•  Restric<ng	access	to	instance	variables	is	an	essen<al	part	of	
encapsula<on	



20 

Complete Simple Class Example	

Program	execu<on	

10/28/16 



21 10/28/16 



22 

Public Interface of a Class 
•  When	you	design	a	class,	start	by	specifying	the	public	interface	of	the	
new	class	

•  What	tasks	will	this	class	perform?	
•  What	methods	will	you	need?	
•  What	parameters	will	the	methods	need	to	receive?	

10/28/16 



23 

Example Public Interface 

•  Since	the	‘self’	parameter	is	required	for	all	methods	it	was	
excluded	for	simplicity	

10/28/16 

Task	 Method	

Add	the	price	of	an	item	 addItem(price)	

Get	the	total	amount	owed	 getTotal()	

Get	the	count	of	items	purchased	 getCount()	

Clear	the	cash	register	for	a	new	sale	 clear()	

•  Example:		A	Cash	Register	Class	



24 

Writing the Public Interface 
## A simulated cash register that tracks the item count and the total amount due. 
# 
class CashRegister :	
		##	Adds	an	item	to	this	cash	register.	
		#	@param	price:	the	price	of	this	item	
		#			
		def addItem(self, price) :			
				#	Method	body	
			
			
		##		Gets	the	price	of	all	items	in	the	current	sale.	
		#		@return	the	total	price	
		#	
		def	getTotal(self):		...	

The	method	declara<ons	make	up	the	
public	interface	of	the	class	

The	data	and	method	bodies	make	up	the	
private	implementa1on	of	the	class	

Class	comments	document	the	
class	and	the	behavior	of	each	
method	

10/28/16 



25 

Using the Class 
•  APer	defining	the	class	we	can	now	construct	an	object:	

register1	=	CashRegister()	
			#	Constructs	a	CashRegister	object	

10/28/16 

•  This	statement	defines	the	register1	variable	and	ini<alizes	it	with	a	
reference	to	a	new	CashRegister	object	



26 

Using Methods 
•  Now	that	an	object	has	been	constructed,	we	are	ready	to	invoke	a	
method:	

register1.addItem(1.95)	#	Invokes	a	method.	

10/28/16 



27 

Accessor and Mutator Methods 
•  Many	methods	fall	into	two	categories:	
1)	Accessor	Methods:			 	'get'	methods	

•  Asks	the	object	for	informa<on	without	changing	it	
•  Normally	returns	the	current	value	of	an	aTribute	

10/28/16 

def	addItem(self,	price):	
def	clear(self):	

def	getTotal(self):	
def	getCount(self):	

2)	Mutator	Methods: 	 	'set'	methods	
•  Changes	values	in	the	object	
•  Usually	take	a	parameter	that	will	change	an	instance	variable	



28 

Instance Variables of Objects 
•  Each	object	of	a	class	has	a	separate	set	of	instance	variables	

10/28/16 

The	values	stored	in	instance	
variables	make	up	the	state	of	

the	object.	



29 

Designing the Data Representation 
•  An	object	stores	data	in	instance	variables	

•  Variables	declared	inside	the	class	
•  All	methods	inside	the	class	have	access	to	them	

•  Can	change	or	access	them	
•  What	data	will	our	CashRegister	methods	need?	

10/28/16 

Task	 Method	 Data	Needed	

Add	the	price	of	an	item	 addItem(price)	 total,	count	

Get	the	total	amount	owed	 getTotal()	 total	

Get	the	count	of	items	purchased	 getCount()	 count	

Clear	cash	register	for	a	new	sale	 clear()	 total,	count	

An	object	holds	instance	variables	that	are	accessed	by	methods	



30 

Programming Tip 9.1 
•  All	instance	variables	should	be	private	and	most	methods	should	be	
public	
•  Although	most	object-oriented	languages	provide	a	mechanism	to	
explicitly	hide	or	protect	private	members	from	outside	access,	
Python	does	not	

•  It	is	common	prac<ce	among	Python	programmers	to	use	names	that	
begin	with	a	single	underscore	for	private	instance	variables	and	
methods	
•  The	single	underscore	serves	as	a	flag	to	the	class	user	that	those	
members	are	private	

10/28/16 



31 

Programming Tip 9.1 
•  You	should	always	use	encapsula<on,	in	which	all	instance	variables	
are	private	and	are	only	manipulated	with	methods	

•  Typically,	methods	are	public	
•  However,	some<mes	you	have	a	method	that	is	used	only	as	a	
helper	method	by	other	methods		

•  In	that	case,	you	should	iden<fy	the	helper	method	as	private	by	
using	a	name	that	begins	with	a	single	underscore	

10/28/16 



32 

Constructors 
•  A	constructor	is	a	method	that	ini<alizes	instance	variables	of	an	object	

•  It	is	automa<cally	called	when	an	object	is	created	

10/28/16 

def	_	_init_	_(self)	:	
				self._itemCount	=	0	
				self._totalPrice	=	0	

#	Calling	a	method	that	matches	the	name	of	the	class		
#	invokes	the	constructor	
register	=	CashRegister()			

•  Python	uses	the	special	name	_	_init_	_	for	the	constructor	
because	its	purpose	is	to	ini<alize	an	instance	of	the	class:	



33 

Default and Named Arguments 
•  Only	one	constructor	can	be	defined	per	class	
•  But	you	can	a	define	constructor	with	default	argument	values	that	
simulate	mul<ple	defini<ons	

class	BankAccount	:	
				def	__init__(self,	initialBalance	=	0.0)	:	
								self._balance	=	initialBalance	

joesAccount	=	BankAccount()			#	Balance	is	set	to	0	

10/28/16 

•  If	no	value	is	passed	to	the	constructor	when	a	BankAccount	object	
is	created	the	default	value	will	be	used	



34 

Default and Named Arguments 
•  If	a	value	is	passed	to	the	constructor	that	value	will	be	used	instead	
of	the	default	one	

joesAccount	=	BankAccount(499.95)		
			#	Balance	is	set	to	499.95	
 

10/28/16 

•  Default	arguments	can	be	used	in	any	method	and	not	just	
constructors	



35 

Syntax: Constructors 

10/28/16 



36 

Constructors: Self	
•  The	first	parameter	variable	of	every	constructor	must	be	self	

•  When	the	constructor	is	invoked	to	construct	a	new	object,	the	self	
parameter	variable	is	set	to	the	object	that	is	being	ini<alized	

def	_	_init_	_(self)	:	
				self._itemCount	=	0	
				self._totalPrice	=	0	
	

Refers	to	the	
object	being	
initialized	

register	=	CashRegister()			
	

After	the	constructor	ends	this	is	a	
reference	to	the	newly	created	object	

10/28/16 



37 

Object References 

•  This	reference	then	allows	methods	of	the	object	to	be	invoked	

register	=	CashRegister()			
	

APer	the	constructor	ends	this	is	a	reference	to	the	
newly	created	object	

print("Your	total	$",	register.getTotal())	
	

Call	the	method	
through	the	
reference	

10/28/16 



38 

Common Error 9.1 (1) 
•  APer	an	object	has	been	constructed,	you	should	not	directly	call	the	
constructor	on	that	object	again:	

	
register1	=	CashRegister()	
register1._	_init_	_()			#	Bad	style	

10/28/16 



39 

Common Error 9.1 (2) 
•  The	constructor	can	set	a	new	CashRegister	object	to	the	cleared	
state,	but	you	should	not	call	the	constructor	on	an	exis<ng	object.	
Instead,	replace	the	object	with	a	new	one:	

In general, you should never call a Python method that starts with a 
double underscore. The are intended for specific internal purposes 

(in this case, to initialize a newly created object). 

register1	=	CashRegister()	
register1	=	CashRegister()			#	OK	

10/28/16 



40 

Implementing Methods 
•  Implemen<ng	a	method	is	very	similar	to	implemen<ng	a	func<on	
except	that	you	access	the	instance	variables	of	the	object	in	the	
method	body	

10/28/16 

Task	 Method	

Add	the	price	of	an	item	 addItem(price)	

Get	the	total	amount	owed	 getTotal()	

Get	the	count	of	items	purchased	 getCount()	

Clear	the	cash	register	for	a	new	sale	 clear()	

def	addItem(self,	price):	
			self._itemCount	=	self._itemCount	+	1							
			self._totalPrice	=	self._totalPrice	+	price	



41 

Syntax: Instance Methods 
•  Use	instance	variables	inside	methods	of	the	class	

•  Similar	to	the	constructor,	all	other	instance	methods	must	include	
the	self	parameter	as	the	first	parameter	

•  You	must	specify	the	self	implicit	parameter	when	using	instance	
variables	inside	the	class	

10/28/16 


