
65

Problem Solving: Patterns for Object Data
•  Common	pa(erns	when	designing	instance	variables	

•  Keeping	a	Total	
•  Coun9ng	Events	
•  Collec9ng	Values	
•  Managing	Object	Proper9es	
•  Modeling	Objects	with	Dis9nct	States	
•  Describing	the	Posi9on	of	an	Object	

11/2/16

66

Patterns: Keeping a Total
•  Examples	

•  Bank	account	balance	
•  Cash	Register	total	
•  Car	gas	tank	fuel	level	

•  Variables	needed	
•  totalPrice	

•  Methods	Required	
•  add	(addItem)	
•  clear	
•  getTotal	

class	CashRegister	:	
				def	addItem(self,	price):	
								self._itemCount	=				
											self._itemCount	+	1			
								self._totalPrice	=		
											self._totalPrice	+	price	
	
				def	clear(self):	
								self._itemCount	=	0	
								self._totalPrice	=	0.0	
	
				def	getTotal(self):	
								return	self._totalPrice	
				

11/2/16

67

class	CashRegister:	
				def	addItem(self,	price):	
								self._itemCount	=				
											self._itemCount	+	1			
								self._totalPrice	=		
											self._totalPrice	+	price	
			
				def	clear(self):	
								self._itemCount	=	0	
								self._totalPrice	=	0.0	
			
				def	getCount(self):	
								return	self._itemCount	
	
				

Patterns: Counting Events
•  Examples	

•  Cash	Register	items	

•  Bank	transac9on	fee	
•  Variables	needed	

•  itemCount	

•  Methods	Required	
•  Add	
•  Clear	
•  Op9onal:	getCount	

11/2/16

68

Patterns: Collecting Values
•  Examples	

•  Mul9ple	choice	ques9on	

•  Shopping	cart	
•  Storing	values	

•  List	
•  Constructor	

•  Ini9alize	to	empty	collec9on	

•  Methods	Required	
•  Add	

class	Cart:	
				def	_	_init_	_(self)	:	
								self._choices	=	[]	
	
				def	addItem(self,	name)	:	
							self._choices.append	
										(choice)				

11/2/16

69

Patterns: Managing Properties
A	property	of	an	object	can	be	
set	and	retrieved	
•  Examples	

•  Student:	name,	ID	

•  Constructor	
•  Set	a	unique	value	

•  Methods	Required	
•  set	
•  get	

class	Student	:	
				def	_	_init_	_	
							(self,	aName,	anId)	:	
								self._name	=	aName	
								self._id	=	anId	
	
				def	getName(self)	:	
								return	self._name	
	
				def	setName(self,	newName)	:	
								self._name	=	newName	
	
				def	getId(self)	:	
								return	self._id	
	
				#	No	setId	method				

11/2/16

70

Patterns: Modeling Object States
Some	objects	can	be	in	one	of	a	set	of	
dis9nct	states	
•  Example:		A	fish	

•  Hunger	states:	
•  Not	Hungry	
•  Somewhat	Hungry	
•  Very	Hungry	

•  Methods	will	change	the	state	
•  eat	
•  move	

class	Fish:	
			NOT_HUNGRY	=	0	
			SOMEWHAT_HUNGRY	=	1	
			VERY_HUNGRY	=	2	
			
			def	eat(self)	:									
						self._hungry	=					
						Fish.NOT_HUNGRY	
	
			def	move(self)	:	
						if	self._hungry	<					
								Fish.VERY_HUNGRY	:	
									self._hungry	=			
									self._hungry	+	1	

11/2/16

71

Patterns: Object Position
•  Examples	

•  Game	object	

•  Bug	(on	a	grid)	
•  Cannonball	

•  Storing	values	
•  Row,	column,	direc9on,	
speed.	.	.	

•  Methods	Required	
•  move	

•  turn	

class	Bug:	
				def	_	_init_	_	
							(self,	aRow,	aColumn,	
								aDirection,	speed)	:	
								self._row	=	aRow	
								self._column	=	aColumn	
								self._direction	=		
											direction	
#	0	=	N,	1	=	E,	2	=	S,	3	=	W		
								.	.	.	
	
		def	moveOneUnit(self):	
						if	(self._direction	==	0):	
										self._row	=		
													self._row	-	1	
						.	.	.	

11/2/16

72

Self-check

11/2/16

A shuttle bus drives along
Main Street, starting at the
intersection of Main and First
and going up to Main and
Twentieth, then turning
around. Each call to the
drive method moves the bus
by one block. Rearrange the
following lines. First list the
constructor (which yields a
bus at First Street heading
towards Twentieth Street).
Then list the methods in
alphabetical order.

73

Object References
•  In	Python,	a	variable	does	not	actually	hold	an	object	
•  It	merely	holds	the	memory	loca*on	of	an	object	

•  The	object	itself	is	stored	in	another	loca9on:	

11/2/16

reg1	=	CashRegister()	
	
	

Reference	

Object	

The	constructor	returns	a	reference	to	the	new	
object,	and	that	reference	is	stored	in	the	reg1	
variable.	

74

Shared References
•  Mul9ple	object	variables	may	contain	references	to	the	same	object	
(‘aliases’)	
•  Single	Reference	

11/2/16

reg1	=	CashRegister	
	
	

reg2	=	reg1	
	
	

The	internal	values	can	be	changed	through	either	reference	

•  Shared	References	

75

Testing if References are Aliases
•  Checking	if	references	are	aliases,	use	the	is	or	the	not	is	operator:	

if	reg1	is	reg2	:	
				print("The	variables	are	aliases.")	
if	reg1	is	not	reg2	:	
				print("The	variables	refer	to	different	objects.")	
	

if	reg1	==	reg2	:	
				print("The	objects	contain	the	same	data.")	
	

11/2/16

•  Checking	if	the	data	contained	within	objects	are	equal	use	the	==	
operator:	

76

The None reference
•  A	reference	may	point	to	‘no’	object	

•  You	cannot	invoke	methods	of	an	object	via	a	None	reference	–	
causes	a	run-9me	error	

11/2/16

middleInitial	=	None			#	No	middle	initial	
	
if	middleInitial	is	None	:	
		print(firstName,	lastName)	
else	:	
		print(firstName,	middleInitial	+	".",	+	lastName)	
	

reg	=	None	
print(reg.getTotal())			#	Runtime	Error!	

•  To	test	if	a	reference	is	None	before	using	it:	

77

The self reference
•  Every	method	has	a	reference	to	the	object	on	which	the	method	was	
invoked,	stored	in	the	self	parameter	variable	
•  It	is	a	reference	to	the	object	the	method	was	invoked	on:	
	

11/2/16

def	addItem(self,	price):	
		self.itemCount	=	self.itemCount	+	1	
		self.totalPrice	=	self.totalPrice	+	price	
	

•  It	can	clarify	when	instance	variables	are	used:	

78

Using self to Invoke Other Methods
•  You	can	also	invoke	a	method	on	self:	

11/2/16

def	_	_init_	_(self)	:	
				self.clear()	

•  In	a	constructor,	self	is	a	reference	to	the	object	that	is	being	
constructed	

•  The	clear()	method	is	invoked	on	that	object	

79

Passing self as a Parameter
•  Suppose,	for	example,	you	have	a	Person	class	with	a	method	
likes(self,	other)	that	checks,	perhaps	from	a	social	network,	
whether	a	person	likes	another	

def	isFriend(self,	other)	:	
				return	self.likes(other)	and	other.likes(self)	

11/2/16

80

Object Lifetimes: Creation
•  When	you	construct	an	object	with	a	constructor,	the	object	is	created,	
and	the	self	variable	of	the	constructor	is	set	to	the	memory	loca9on	
of	the	object		
•  Ini9ally,	the	object	contains	no	instance	variables.	
•  As	the	constructor	executes	statements	such	as	instance	variables	
are	added	to	the	object	

self._itemCount	=	0	

reg1	=	CashRegister()	

11/2/16

•  Finally,	when	the	constructor	exits,	it	returns	a	reference	to	the	
object,	which	is	usually	captured	in	a	variable:	

81

Object Lifetimes: Cleaning Up
•  The	object,	and	all	of	its	instance	variables,	stays	alive	as	long	as	there	
is	at	least	one	reference	to	it.	

•  When	an	object	is	no	longer	referenced	at	all,	it	is	eventually	removed	
by	a	part	of	the	virtual	machine	called	the	“garbage	collector”	

reg1	=	CashRegister()			#	New	object	referenced	by	reg1	
reg1	=	CashRegister()				
			#	Another	object	referenced	by	reg1	
			#	First	object	will	be	garbage	collected	
	

11/2/16

82 11/2/16

83

Writing a Fraction Class
•  So	far	we	have	worked	with	floa9ng-point	numbers	but	computers	
store	binary	values,	so	not	all	real	numbers	can	be	represented	
precisely	

•  In	applica9ons	where	the	precision	of	real	numbers	is	important,	we	
can	use	ra*onal	numbers	to	store	exact	values		
•  This	helps	to	reduce	or	eliminate	round-off	errors	that	can	occur	
when	performing	arithme9c	opera9ons	

•  A	ra9onal	number	is	a	number	that	can	be	expressed	as	a	ra9o	of	
two	integers:	7/8	

•  The	top	value	is	called	the	numerator	and	the	bo(om	value,	which	
cannot	be	zero,	is	called	the	denominator	

11/2/16

84

Designing the Fraction Class
•  We	want	to	use	our	ra9onal	numbers	as	we	would	use	integers	and	
floa9ng	point	values	

•  Thus,	our	Fraction	class	must	perform	the	following	opera9ons:	
1.  Create	a	ra9onal	number	
2.  Access	the	numerator	and	denominator	values,	individually	
3.  Determine	if	the	ra9onal	number	is	nega9ve	or	zero	
4.  Perform	normal	mathema9cal	opera9ons	on	two	ra9onal	

numbers	(addi9on,	subtrac9on,	mul9plica9on,	division,	
exponen9a9on)	

5.  Logically	compare	two	ra9onal	numbers	
6.  Produce	a	string	representa9on	of	the	ra9onal	number	

•  The	objects	of	the	Frac9on	class	will	be	immutable	because	none	of	
the	opera9ons	modify	the	objects’	instance	variables	

11/2/16

85

Required Data Attributes
•  Because	a	ra9onal	number	consists	of	two	integers,	we	need	two	
instance	variables	to	store	those	values:	

self._numerator	=	0	
self._denominator	=	1	

11/2/16

•  At	no	9me	should	the	ra9onal	number	be	converted	to	a	floa9ng-point	
value	or	we	will	lose	the	precision	gained	from	working	with	ra9onal	
numbers	

86

Representing Values Equivalently
•  Signed	values	

•  Nega9ve	and	posi9ve	ra9onal	numbers	each	have	two	forms	that	
can	be	used	to	specify	the	corresponding	value	

•  Posi9ve	values	can	be	indicated	as	1/2 or –1/–2,	and	nega9ve	values	
as	–2/5 or 2/–5	

•  When	performing	an	arithme9c	opera9on	or	logically	comparing	
two	ra9onal	numbers,	it	will	be	much	easier	if	we	have	a	single	way	
to	represent	a	nega9ve	value	

•  For	simplicity,	we	choose	to	set	only	the	numerator	to	a	nega9ve	
value	when	the	ra9onal	number	is	nega9ve,	and	both	the	numerator	
and	denominator	will	be	posi9ve	integers	when	the	ra9onal	number	
is	posi9ve		

11/2/16

87

Representing Values Equivalently
•  Equivalent	frac9ons	

•  For	example,	1/4	can	be	wri(en	as	1/4,	2/8,	16/64,	or	123/492	
•  It	will	be	much	easier	to	perform	the	opera9on	if	the	number	is	
stored	in	reduced	form	

11/2/16

88

The Constructor (1)
•  Because	Fraction	objects	are	immutable,	their	values	must	be	set	
when	they	are	created.	This	requires	parameter	variables	for	both	the	
numerator	and	denominator	

def	_	_init_	_(self,	numerator,	denominator)	:	

11/2/16

•  The	method	must	check	for	special	cases:		
•  Zero	denominators	
•  The	number	represents	zero	or	a	nega9ve	number	

89

The Constructor
def	_	_init_	_(self,	numerator	=	0,	denominator	=	1)	:	
				if	denominator	==	0	:	
								raise	ZeroDivisionError("Denominator	cannot	be	zero.")	
				if	numerator	==	0	:	
								self._numerator	=	0	
								self._denominator	=	1	
				else	:	
								if	(numerator	<	0	and	denominator	>=	0	or	
												numerator	>=	0	and	denominator	<	0)	:	
											sign	=	-1	
								else	:	
											sign	=	1	

11/2/16

90

The Constructor
				a	=	abs(numerator)	
				b	=	abs(denominator)	
				while	a	%	b	!=	0	:	
								tempA	=	a	
								tempB	=	b	
								a	=	tempB	
								b	=	tempA	%	tempB	
				self._numerator	=	abs(numerator)							#	b	*	sign	
				self._denominator	=	abs(denominator)			#b	

11/2/16

91

Testing the Constructor
frac1	=	Fraction(1,	8)	#	Stored	as	1/8	
frac2	=	Fraction(-2,	-4)	#	Stored	as	1/2	
frac3	=	Fraction(-2,	4)	#	Stored	as	-1/2	
frac4	=	Fraction(3,	-7)	#	Stored	as	-3/7	
frac5	=	Fraction(0,	15)	#	Stored	as	0/1	
frac6	=	Fraction(8,	0)	#	Error!	exception	is	raised.	

11/2/16

92

Comparing Fractions (1)
•  In	Python,	we	can	define	and	implement	methods	that	will	be	called	
automa9cally	when	a	standard	Python	operator	(+,	*,	==,	<)	is	applied	
to	an	instance	of	the	class	

•  For	example,	to	test	whether	two	frac9ons	are	equal,	we	could	
implement	a	method:	
•  isequal()	and	use	it	as	follows:	

if	frac1.isequal(frac2)	:	
				print("The	fractions	are	equal.")	

11/2/16

93

Comparing Fractions (2)

	
•  Automa9cally	calls	this	method	when	we	compare	two	Fraction	
objects	using	the	==	operator:	

def	_	_eq_	_(self,	rhsValue)	:	
				return	(self._numerator	==	rhsValue.numerator	and	
												self._denominator	==	rhsValue.denominator)	

if	frac1	==	frac2	:	#	Calls	frac1._	_eq_	_(frac2)	
				print("The	fractions	are	equal.")	

11/2/16

•  Of	course,	we	would	prefer	to	use	the	operator	==	
•  This	is	achieved	by	defining	the	special	method:		

	_	_eq_	_():	
	

