Writing a Fraction Class

* So far we have worked with floating-point numbers but computers
store binary values, so not all real numbers can be represented
precisely

* |In applications where the precision of real numbers is important, we
can use rational numbers to store exact values

e This helps to reduce or eliminate round-off errors that can occur
when performing arithmetic operations

* A rational number is a number that can be expressed as a ratio of
two integers: 7/8

* The top value is called the numerator and the bottom value, which
cannot be zero, is called the denominator

11/4/16

83

Designing the Fraction Class

* We want to use our rational numbers as we would use integers and
floating point values

e Thus, our Fraction class must perform the following operations:

1.
2.
3.
4

5.
6.

* The objects of the Fraction class will be immutable because none of

Create a rational number
Access the numerator and denominator values, individually
Determine if the rational number is negative or zero

Perform normal mathematical operations on two rational
numbers (addition, subtraction, multiplication, division,
exponentiation)

Logically compare two rational numbers
Produce a string representation of the rational number

the operations modify the objects’ instance variables

11/4/16

84

Required Data Attributes

* Because a rational number consists of two integers, we need two
instance variables to store those values:

self. numerator = 0
self. denominator =1

* At no time should the rational number be converted to a floating-point
value or we will lose the precision gained from working with rational

numbers

11/4/16 85

Representing Values Equivalently

e Signed values

* Negative and positive rational numbers each have two forms that
can be used to specify the corresponding value

* Positive values can be indicated as 1/2 or —1/-2, and negative values
as—2/5 or 2/-5

 When performing an arithmetic operation or logically comparing
two rational numbers, it will be much easier if we have a single way
to represent a negative value

* For simplicity, we choose to set only the numerator to a negative
value when the rational number is negative, and both the numerator
and denominator will be positive integers when the rational number
is positive

11/4/16 86

Representing Values Equivalently

e Equivalent fractions
* For example, 1/4 can be written as 1/4, 2/8, 16/64, or 123/492

* It will be much easier to perform the operation if the number is
stored in reduced form

11/4/16

87

The Constructor (1)

* Because Fraction objects are immutable, their values must be set
when they are created. This requires parameter variables for both the

numerator and denominator

def _ _init__(self, numerator, denominator) :

 The method must check for special cases:
e Zero denominators

* The number represents zero or a negative number

11/4/16

88

def

The Constructor

__init__(self, numerator = @, denominator = 1)
if denominator ==
raise ZeroDivisionError("Denominator cannot be zero.")
if numerator ==
self. numerator = 0
self. denominator
else
if (numerator < @ and denominator >= @ or
numerator >= @ and denominator < 0) :
sign = -1
else
sign =1

1

11/4/16 89

The Constructor

a = abs(numerator)
b = abs(denominator)
while a % b != 0 :

tempA = a
tempB = b
a = tempB
b = tempA % tempB
self. numerator = abs(numerator) # b * sign

self. denominator = abs(denominator) #b

11/4/16

Testing the Constructor

fracl
frac2
frac3
fracd
frach
fracé

11/4/16

Fraction(1l, 8) # Stored as 1/8

Fraction(-2, -4) # Stored as 1/2
Fraction(-2, 4) # Stored as -1/2

Fraction(3, -7) # Stored as -3/7

Fraction(@, 15) # Stored as 0/1

Fraction(8, ©) # Error! exception is raised.

91

Comparing Fractions (1)

* In Python, we can define and implement methods that will be called
automatically when a standard Python operator (+, *, ==, <) is applied
to an instance of the class

* For example, to test whether two fractions are equal, we could
implement a method:

« isequal() and use it as follows:

if fracl.isequal(frac2) :
print("The fractions are equal.")

11/4/16

92

Comparing Fractions (2)

* Of course, we would prefer to use the operator ==
* This is achieved by defining the special method:

—eq _():

def eq_ (self, rhsValue) :

return (self. numerator == rhsValue.numerator and
self. denominator == rhsValue.denominator)

e Automatically calls this method when we compare two Fraction
objects using the == operator:

if fracl == frac2 : # Calls fracl. _eq_ _(frac2)
print("The fractions are equal.")

11/4/16 93

Special Methods

* Some special methods are called when an instance of the class is
passed to a built-in function. For example, suppose you attempt to

convert a Fraction object to a floating point number using the
float() function:

x = float(fracl)

e Thenthe float_ () special method is called.

 Here is a definition of that method:

def float (self) :
return self. numerator / self. denominator

11/4/16

94

Common Special Methods

Table | Common Special Methods

Expression Method Name Returns Description
X+ Y __add__(self,) object Addition
X -y __sub__(self, y) object Subtraction
R __mul__(self, y) object Multiplication
x/y __truediv__(self,) object Real division
x /Yy __floordiv__(self, y) object Floor division
x%y __mod__(self, y) object Modulus
7 L o __pow__(self, y) object Exponentiation
X ==Y __eq__(self, y) Boolean Equal
x =y __ne__(self,) Boolean Not equal

11/4/16

Common Special Methods

Table | Common Special Methods

X <Yy __1t__(self, y) Boolean Less than
X <= __le__(self, ») Boolean Less than or equal
x>y __gt__(self, y) Boolean Greater than
X >=y __ge__(self, y) Boolean Greater than or equal
-X __neg__(self) object Unary minus
abs (x) __abs__(self) object Absolute value
float(x) __float__(self) float Convert to a floating-point value
int(x) __int__(self) integer Convert to an integer value
str(x) __repr__(self) string Convert to a readable string
print(x)
x = ClassName() __init__(self) object Constructor

11/4/16 96

Addition of Fractions

* All of the arithmetic operations that can be performed on a Fraction
object should return the result in a new Fraction object

* For example, when the statement below is executed, frac1l should be
added to frac2 and the result returned as a new Fraction object that
is assigned to the newFrac variable

newFrac = fracl + frac2

11/4/16 97

Fractional Addition

* From elementary arithmetic, you know that two fractions must have a
common denominator in order to add them. If they do not have a
common denominator, we can still add them using the formula:

g+£_d-a+b-c
b d b-d

11/4/16

98

Defining the Method For Addition

def add__(self, rhsValue) :

num = (self. numerator * rhsValue. denominator +
self. denominator * rhsValue. numerator)

den = self. denominator * rhsValue. denominator
return Fraction(num, den)

11/4/16

99

Logic: Less Than

* Notethata/b<c/dwhend - a<b - c.(Multiply both sides with b -
d.)

* Based on this observation, the less than operation is implemented by
the 1t () method as follows:

def 1t (self, rhsValue) :

return (self. numerator * rhsValue. denominator
self. denominator * rhsValue. numerator)

11/4/16 100

Fraction.py

7 class Fraction

8 ## Constructs a rational number initialized to zero or a user specified value.
o # @param numerator the numerator of the fraction (detault is 0)
10 # @param denominator the denominator of the fraction (cannot be 0)
11 #
12 def __init__(self, numerator = 0, denominator = 1)
13 # The denominator cannot be zero.
14 if denominator ==
- - - LY o DR 2 L o Y. S S - mmemen mds Lo Rp—— LY
15 raise ZeroDivisT 22 # Otherwise, store the rational number in reduced form.
16 23 else :
17 # If the rational nur 24 # Determine the sign.
18 if numerator == 25 if (numerator < 0 and denom1r.1ator >= or
26 numerator >= 0 and denominator < 0) :
19 self._numerator 27 sign =
20 self._denominat¢ 28 else :
29 sign =
30
31 # Reduce to smallest form.
32 a = abs(numerator)
33 b = abs(denominator)
34 while a % b !=
35 tempA = a
36 tempB = b
37 a = tempB
38 b = tempA % tempB
39
40 self._numerator = abs(numerator) // b * sign
41 self._denominator = abs(denominator) // b

11/4/16 101

Fraction.py

47 def __add__(self, rhsValue) :

48 num = (self._numerator * rhsValue._denominator +

49 self._denominator * rhsValue._numerator)

50 den = self._denominator * rhsValue._denominator

51 return Fraction(num, den)

52

SE ## Subtracts a fraction from this fraction.

54 # @param rhsValue the right-hand side fraction

55 # @return a new Fraction object resulting from the subtraction
56 #

57 def __sub__(self, rhsvValue) :

58 num = (self._numerator * rhsValue._denominator -

59 self._denominator * rhsValue._numerator)

60 den = self._denominator * rhsValue._denominator

61 return Fraction(num, den)

67 def __eq__(self, rhsvalue) :

68 return (self._numerator == rhsValue._numerator and
69 self._denominator == rhsValue._denominator)

11/4/16 102

Fraction.py

75 def __1t__(self, rhsvalue) :

76 return (self._numerator * rhsValue._denominator <

77 self._denominator * rhsValue._numerator)

78

79 ## Determines if this fraction is not equal to another fraction.

80 # @param rhsValue the right-hand side fraction

81 # @return True if the fractions are not equal

82 #

83 def __ne__(self, rhsvalue) :

84 return not self == rhsValue

85

86 ## Determines if this fraction is less than or equal to another fraction.

87 # @param rhsValue the right-hand side fraction

88 # @return True if this fraction is less than or equal to the other

89 #

90 def __le__(self, rhsvValue) :

91 return not rhsValue < self

92

93 ## Determines if this fraction is greater than another fraction.

94 # @param rhsValue the right-hand side fraction

95 # @return True if this fraction is greater than the other

96 #

97 def __gt__(self, rhsvalue) :

98 return rhsValue < self

99
100 ## Determines if this fraction is greater than or equal to another fraction.
101 # @param rhsValue the right-hand side fraction
102 # @return True if this fraction is greater than or equal to the other
103 =

104 def __ge__(self, rhsvalue) :

n 105 return not self < rhsValue “

Fraction.py

110 def __ float__ (self) :

111 return self._numerator / self._denominator

112

113 ## Gets a string I‘Upl‘c\cn[\ltinn of the fraction.

114 # @return astring in the format #/#

115 #

116 def __repr__(self) :

117 return str(self._numerator) + "/" + str(self._denominator)

11/4/16 104

Checking Type

* To ensure that variables are the correct type, Python provides the

built-in isinstance() function that can be used to check the type of
object referenced by a variable.

* For example, the constructor for the Fraction class requires two
integers
class Fraction :

def _ _init_(self, numerator, denominator) :
if (not isinstance(numerator, int) or
not isinstance(denominator, int)) :
raise TypeError

("The numerator and denominator must be integers.")

11/4/16 105

Summary: Classes and Objects

* A class describes a set of objects with the same behavior

* Every class has a public interface: a collection of methods through
which the objects of the class can be manipulated

* Encapsulation is the act of providing a public interface and hiding
the implementation details

* Encapsulation enables changes in the implementation without
affecting users of a class

11/4/16 106

Summary: Variables and Methods

An object’s instance variables store the data required for executing its
methods

Each object of a class has its own set of instance variables

An instance method can access the instance variables of the object on
which it acts

A private instance variable should only be accessed by the methods of
its own class

Class variables have a single copy of the variable shared among all of
the instances of the class

11/4/16 107

Summary: Method Headers, Data

e Method Headers

* You can use method headers and method comments to specify the
public interface of a class

A mutator method changes the object on which it operates

* An accessor method does not change the object on which it
operates

* Data Representation

* For each accessor method, an object must either store or compute
the result

 Commonly, there is more than one way of representing the data of
an object, and you must make a choice

* Be sure that your data representation supports method calls in any
order

11/4/16 108

Summary: Constructors

A constructor initializes the object’s instance variables
A constructor is invoked when an object is created

The constructor is defined using the special method name: _ _init

_0

Default arguments can be used with a constructor to provide different
ways of creating an object

11/4/16 109

Summary: Method Implementation

* The object on which a method is applied is automatically passed to the
self parameter variable of the method

* In a method, you access instance variables through the self
parameter variable

11/4/16 110

Summary: Testing Classes

e A unit test verifies that a class works correctly in isolation, outside a
complete program

* To test a class, use an environment for interactive testing, or write a
tester class to execute test instructions

* Determining the expected result in advance is an important part of
testing

11/4/16

111

Summary: Object Tracing

Object tracing is used to visualize object behavior

Write the methods on the front of a card, and the instance variables
on the back

Update the values of the instance variables when a mutator method is
called

11/4/16 112

Summary: Patterns for Classes

An instance variable for the total is updated in methods that increase
or decrease the total amount

A counter that counts events is incremented in methods that
correspond to the events

An object can collect other objects in a list

An object property can be accessed with a getter method and changed
with a setter method

If your object can have one of several states that affect the behavior,
supply an instance variable for the current state

11/4/16 113

Summary: Patterns for Classes

* To model a moving object, you need to store and update its position

11/4/16 114

Summary: Object References

An object reference specifies the location of an object
Multiple object variables can contain references to the same object

Use the is and is not operators to test whether two variables are
aliases

The None reference refers to no object

11/4/16

115

Summary: Defining Special Methods

* To use a standard operator with objects, define the corresponding
special method

e Define the special _ _repr_ () method to create a string
representation of an object

11/4/16 116

