
Chapter 10
INHERITANCE	

11/7/16	 1	

Chapter Goals
•  To	learn	about	inheritance	
•  To	implement	subclasses	that	inherit	and	override	superclass	methods	

•  To	understand	the	concept	of	polymorphism	

In	this	chapter,	you	will	learn	how	the	no=on	of	inheritance	
expresses	the	rela=onship	between	specialized	and	general	

classes.	

11/7/16	 2	

Contents
•  Inheritance	Hierarchies	
•  Implemen=ng	Subclasses	
•  Calling	the	Superclass	constructor	
•  Overriding	Methods	
•  Polymorphism	
•  Applica=on:	A	geometric	shape	hierarchy	

11/7/16	 3	

Inheritance Hierarchies
•  In	object-oriented	programming,	inheritance	is	a	
rela=onship	between:	

•  A	superclass:		a	more	generalized	class	

•  A	subclass:		a	more	specialized	class	
•  The	subclass	‘inherits’	data	(variables)	and	behavior	
(methods)	from	the	superclass	
	

	

	

11/7/16	 4	

A Vehicle Class Hierarchy

•  General	

•  Specialized	

	

•  More	Specific	

416

Objects from related classes usually share common
behavior. For example, shovels, rakes, and clippers all
perform gardening tasks. In this chapter, you will learn
how the notion of inheritance expresses the relationship
between specialized and general classes. By using
inheritance, you will be able to share code between classes
and provide services that can be used by multiple classes.

9.1 Inheritance Hierarchies
In object-oriented design, is a relationship between a more general class
(called the) and a more specialized class (called the). The subclass
inherits data and behavior from the superclass. For example, consider the relation-
ships between different kinds of vehicles depicted in Figure 1.

Every car is a vehicle. Cars share the common traits of all vehicles, such as the abil-
ity to transport peo ple from one place to another. We say that the class Car inherits
from the class Vehicle. In this relationship, the Vehicle class is the superclass and the
Car class is the subclass. In Figure 2, the superclass and subclass are joined with an
arrow that points to the superclass.

Suppose we have an algorithm that manipulates a Vehicle object. Because a car is a
special kind of vehi cle, we can use a Car object in such an algorithm, and it will work
correctly. The states that you can always use a subclass object
when a superclass object is expected. For example, con sider a method that takes an
argument of type Vehicle:

void processVehicle(Vehicle v)

A subclass inherits
data and behavior
from a superclass.

You can always use
a subclass object
in place of a
superclass object.

Figure 1 An Inheritance Hierarchy of Vehicle Classes

Vehicle

Motorcycle Car Truck

Sedan SUV

bjlo_ch09_9.indd 416 10/24/11 1:17 PM

11/7/16	 5	

The Substitution Principle
•  Since	the	subclass	Car	“is-a”	Vehicle	

•  Car	shares	common	traits	with	Vehicle	

•  You	can	subs=tute	a	Car	object	in	an	
algorithm	that	expects	a	Vehicle	object	

11/7/16	 6	

The ‘is-a’ relationship is represented by
an arrow in a class diagram and means

that the subclass can behave as an object
of the superclass.

is-a
myCar	=	Car(.	.	.)	
processVehicle(myCar)	

Quiz Question Hierarchy
•  There	are	different	types	of	quiz	ques=ons:	
1)	Fill-in-the-blank	
2)	Single	answer	choice	
3)	Mul=ple	answer	choice	
4)	Numeric	answer	
5)	Free	Response	
	

	
	

11/7/16	 7	

The	‘root’	of	the	hierarchy	is	
shown	at	the	top.	

•  A	ques=on	can:	
•  Display	its	text	
•  Check	for	correct	answer	
	

	
	

Questions.py

•  Only	handles	Strings	

•  No	support	for:	
•  Numeric	answers	

•  Mul=ple	answer	choice	

The class Question is the
‘root’ of the hierarchy, also

known as the superclass

11/7/16	 8	

Questions.py

11/7/16	 9	

Questions.py

Creates an object
of the Question
class and uses

methods.

11/7/16	 10	

Programming Tip
•  Use	a	Single	Class	for	Varia=on	in	Values,	Inheritance	for	Varia=on	in	
Behavior	
•  If	two	vehicles	only	vary	by	fuel	efficiency,	use	an	instance	variable	
for	the	varia=on,	not	inheritance	

	
	
	
•  If	two	vehicles	behave	differently,	
			use	inheritance	

11/7/16	 11	

#	Car	instance	variable	
milesPerGallon	
	
	

Be careful not to over-use inheritance

416

Objects from related classes usually share common
behavior. For example, shovels, rakes, and clippers all
perform gardening tasks. In this chapter, you will learn
how the notion of inheritance expresses the relationship
between specialized and general classes. By using
inheritance, you will be able to share code between classes
and provide services that can be used by multiple classes.

9.1 Inheritance Hierarchies
In object-oriented design, inheritance is a relationship between a more general class
(called the super class) and a more specialized class (called the subclass). The subclass
inherits data and behavior from the superclass. For example, consider the relation-
ships between different kinds of vehicles depicted in Figure 1.

Every car is a vehicle. Cars share the common traits of all vehicles, such as the abil-
ity to transport peo ple from one place to another. We say that the class Car inherits
from the class Vehicle. In this relationship, the Vehicle class is the superclass and the
Car class is the subclass. In Figure 2, the superclass and subclass are joined with an
arrow that points to the superclass.

Suppose we have an algorithm that manipulates a Vehicle object. Because a car is a
special kind of vehi cle, we can use a Car object in such an algorithm, and it will work
correctly. The substitution principle states that you can always use a subclass object
when a superclass object is expected. For example, con sider a method that takes an
argument of type Vehicle:

void processVehicle(Vehicle v)

A subclass inherits
data and behavior
from a superclass.

You can always use
a subclass object
in place of a
superclass object.

Figure 1 An Inheritance Hierarchy of Vehicle Classes

Vehicle

Motorcycle Car Truck

Sedan SUV

bjlo_ch09_9.indd 416 10/24/11 1:17 PM

416

Objects from related classes usually share common
behavior. For example, shovels, rakes, and clippers all
perform gardening tasks. In this chapter, you will learn
how the notion of inheritance expresses the relationship
between specialized and general classes. By using
inheritance, you will be able to share code between classes
and provide services that can be used by multiple classes.

9.1 Inheritance Hierarchies
In object-oriented design, is a relationship between a more general class
(called the) and a more specialized class (called the). The subclass
inherits data and behavior from the superclass. For example, consider the relation-
ships between different kinds of vehicles depicted in Figure 1.

Every car is a vehicle. Cars share the common traits of all vehicles, such as the abil-
ity to transport peo ple from one place to another. We say that the class Car inherits
from the class Vehicle. In this relationship, the Vehicle class is the superclass and the
Car class is the subclass. In Figure 2, the superclass and subclass are joined with an
arrow that points to the superclass.

Suppose we have an algorithm that manipulates a Vehicle object. Because a car is a
special kind of vehi cle, we can use a Car object in such an algorithm, and it will work
correctly. The states that you can always use a subclass object
when a superclass object is expected. For example, con sider a method that takes an
argument of type Vehicle:

void processVehicle(Vehicle v)

A subclass inherits
data and behavior
from a superclass.

You can always use
a subclass object
in place of a
superclass object.

Figure 1 An Inheritance Hierarchy of Vehicle Classes

Vehicle

Motorcycle Car Truck

Sedan SUV

bjlo_ch09_9.indd 416 10/24/11 1:17 PM

The Cosmic Superclass: object	
•  In	Python,	every	class	that	is	declared	without	an	explicit	superclass	
automa=cally	extends	the	class	object	

11/7/16	 12	

Implementing Subclasses
•  Consider	implemen=ng	ChoiceQuestion	to	handle:					

11/7/16	 13	

In	this	sec4on	you	will	see	how	to	form	a	subclass	and	how	a	
subclass	automa4cally	inherits	from	its	superclass	

•  How	does	ChoiceQuestion	differ	from	Question?	
•  It	stores	choices	(1,2,3	and	4)	in	addi=on	to	the	ques=on	
•  There	must	be	a	method	for	adding	mul=ple	choices	

•  The	display()	method	will	show	these	choices	below	the	
ques=on,	numbered	appropriately	

Inheriting from the Superclass
•  Subclasses	inherit	from	the	superclass:	

•  All	methods	that	it	does	not	override	

•  All	instance	variables	
•  The	Subclass	can	

•  Add	new	instance	variables	
•  Add	new	methods	
•  Change	the	implementa=on	of	inherited	methods	

	

						

Form a subclass by
specifying what is
different from the
superclass.

9.2 Implementing Subclasses 421

Like the manufacturer of a
stretch limo, who starts with a
regular car and modifies it, a
programmer makes a subclass
by modifying another class.

The subclass inherits all public methods from the superclass. You declare any
methods that are new to the subclass, and change the implementation of inherited
methods if the inherited behavior is not appro priate. When you supply a new imple-
mentation for an inherited method, you the method.

A ChoiceQuestion object differs from a Question object in three ways:

• Its objects store the various choices for the answer.
• There is a method for adding answer choices.
• The display method of the ChoiceQuestion class shows these choices so that the

respondent can choose one of them.

When the ChoiceQuestion class inherits from the Question class, it needs to spell out
these three differences:

public class ChoiceQuestion extends Question
{
 // This instance variable is added to the subclass
 private ArrayList<String> choices;

 // This method is added to the subclass
 public void addChoice(String choice, boolean correct) { . . . }

 // This method overrides a method from the superclass
 public void display() { . . . }
}

The reserved word extends denotes inheritance.
Figure 5 shows the layout of a ChoiceQuestion object. It has the text and answer

instance variables that are declared in the Question superclass, and it adds an additional
instance variable, choices.

The addChoice method is specific to the ChoiceQuestion class. You can only apply it to
ChoiceQuestion objects, not general Question objects.

In contrast, the display method is a method that already exists in the superclass.
The subclass overrides this method, so that the choices can be properly displayed.

A subclass can
override a
superclass method
by providing a new
implementation.

The extends reserved
word indicates that a
class inherits from a
superclass.

Figure 5 Data Layout of Subclass Object

text =

ChoiceQuestion

answer =

choices =

Question portion

bjlo_ch09_9.indd 421 10/24/11 1:17 PM

11/7/16	 14	

Overriding Superclass Methods
•  Can	you	re-use	any	methods	of	the	Question	class?	

•  Inherited	methods	perform	exactly	the	same	
•  If	you	need	to	change	how	a	method	works:	

•  Write	a	new	more	specialized	method	in	the	subclass	
•  Use	the	same	method	name	as	the	superclass	method	you	want	to	replace	
•  It	must	take	all	of	the	same	parameters	

•  This	will	override	the	superclass	method	

•  The	new	method	will	be	invoked	with	the	same	method	name	when	
it	is	called	on	a	subclass	object	
	

						

A subclass can override a method
of the superclass by providing a
new implementation.

11/7/16	 15	

Planning the Subclass
•  Pass	the	name	of	the	superclass	Question	as	part	of	the	defini=on	of	the	
subclass	
•  Inherits	text	and	answer	variables	
•  Add	new	instance	variable	choices	

class	ChoiceQuestion(Question):	
				#	The	subclass	has	its	own	constructor.	
				def	_	_init_	_(self)	:	
								.	.	.	
								#	This	instance	variable	is	added	to	the	subclass.	
								self._choices	=	[]	
	
				#	This	method	is	added	to	the	subclass	
				def	addChoice(self,	choice,	correct)	:	
								.	.	.		
				#	This	method	overrides	a	method	from	the	superclass	
				def	void	display(self)	:	
								.	.	.				
	 11/7/16	 16	

Syntax 10.1: Subclass Definition
•  The	class	name	inside	parentheses	in	the	class	header	denotes	inheritance.	

11/7/16	 17	

