Chapter 11

RECURSION

Chapter Goals

 To learn to “think recursively”
* To be able to use recursive helper functions
* To understand the relationship between recursion and iteration

* To understand when the use of recursion affects the efficiency of an
algorithm

* To analyze problems that are much easier to solve by recursion than by
iteration

e To process data with recursive structures using mutual recursion

11/14/16

Contents

* Triangle Numbers Revisited

* Problem Solving: Thinking Recursively
e Recursive Helper Functions

* The Efficiency of Recursion

* Permutations

* Backtracking

e Mutual Recursion

11/14/16

11.1 Triangle Numbers Revisited

* Triangle shape of side length 4:
[]

[]
(1011
[]

* Will use recursion to compute the area of a triangle of width n,
assuming each [] square hasanareaof 1
 Also called the nt" triangle number

* The third triangle number is 6, the
fourth is 10

11/14/16

Handling Triangle of Width 1

* The triangle consists of a single square
* |[tsareais1
* Take care of this case first:

def triangleArea(sidelLength) :

if sidelLength ==
return 1

11/14/16 Page 5

Handling The General Case

 Assume we know the area of the smaller, colored triangle:

* Area of larger triangle can be calculated as

area = smallerArea + sidelength

* To get the area of the smaller triangle

e Callthe triangleArea() function:

smallerSidelLength = sidelLength - 1
smallerArea = triangleArea(smallerSidelLength)

11/14/16 Page 6

Computing the Area of a Triangle With Width 4

e triangleArea() function makes a smaller triangle of width 3

e |t calls triangleArea() on that triangle

e That function makes a smaller triangle of width 2
e |tcallstriangleArea() on that triangle

e That function makes a smaller triangle of width 1

e |tcalls triangleArea() on that triangle

e That function returns 1

e The function returns smallerArea + sidelLength =1+2=3

e The function returns smallerArea + sidelLength =3+3=6

e The function returns smallerArea + sidelLength =6+4=10

11/14/16

Recursive Computation

* A recursive computation solves a problem by using the solution to the
same problem with simpler inputs

* Call pattern of a recursive function is complicated

e Key: Don’t think about it

11/14/16 Page 8

Successful Recursion

* Every recursive call must simplify the computation
in some way

* There must be special cases to handle the simplest
computations directly

11/14/16 Page 9

Other Ways to Compute Iriangle
Numbers

* The area of a triangle equals the sum:

1 +2+ 3+ ... + sidelLength

* Using a simple loop:

area = 0;
for i in range (1, (sidelLength+1), 1) :
area = area + 1

e Using math:

142+...+n=nx(n+1)/2
=>n * (n+1) / 2

11/14/16

Trianglenumbers.py

, _ _ Program Run
ThlS progr;un COII]PUIC‘S a I'I'l;ll]gl(‘ I]Ull]bCI' USlIlg recursion.
Area: 55

def main() : Expected: 55

area = triangleArea(l10)
print("Area:", area)
print("Expected: 55")

LCONIOITUVHLAWN -

10 ## Computes the area of a triangle with a given side length.
11 # Q@param S1d€Lengththt‘ﬂdkanWth(DttthIlU]Wh.blbt
12 # @returnthe area

13 #

14 def triangleArea(sidelLength) :

15 if sidelength <=

16 return

17 if sidelength ==

18 return

19 smallerSideLength = sidelLength -

20 smallerArea = triangleArea(smallerSidelLength)
21 area = smallerArea + sidelLength

22 return area

23

24 # Start the program.

25 main()

11/14/16

Special Topic 11.1

* An Object-Oriented version of the triangles program

class Triangle
def _ init _ (self, sidelength) :
self. sidelLength = sidelLength
def getArea(self) :
if self. sidelLength == 1 :
return 1

* General case: compute the area of the larger triangle as
smallerArea + self. sidelength.

* To get the smaller area:

smallerTriangle = Triangle(self. sidelLength - 1)
smallerArea = smallerTriangle.getArea()
area = smallerArea + self. sidelLength

11/14/16 Page 12

Common Error 11.1

* Infinite recursion:
* A function calling itself over and over with no end in sight.

* The computer needs some amount of memory for bookkeeping
during each call.

* After some number of calls, all memory that is available for this
purpose is exhausted.

* Your program shuts down and reports a “stack overflow”.

 Causes:

* The arguments don’t get simpler or because a special terminating
case is missing.

11/14/16

Thinking Recursively

* Problem: Test whether a sentence is
a palindrome

e Palindrome: A string that is equal to itself
when you reverse all characters

* Aman, a plan, a canal — Panama!
* Go hang a salami, | ’'m a lasagna hog
* Madam, |’ m Adam

11/14/16

Implement IsPalindrome() Function

def isPalindrome(text) :

11/14/16 Page 15

Thinking Recursively: Step 1

e Consider various ways to simplify inputs.
* Several possibilities:
e Remove the first character
* Remove the last character
* Remove both the first and last characters
e Remove a character from the middle

Cut the string into two halves

11/14/16

Thinking Recursively: Step 2 (1)

Combine solutions with simpler inputs into a solution of the original
problem.

* Most promising simplification: Remove both first and last characters.
« “adam, |’'m Ada " is a palindrome too!

. Thus, a word is a palindrome if
* The first and last letters match, and

* Word obtained by removing the first and last letters is a
palindrome

11/14/16

Thinking Recursively: Step 2 (2)

e What if first or last character is not a letter?
Ignore it

 [f the first and last characters are letters, check whether they
match; if so, remove both and test shorter string

* [f last character isn’t a letter, remove it and test shorter string

 [f first character isn’t a letter, remove it and test shorter string

11/14/16

Thinking Recursively: Step 3

J Find solutions to the simplest inputs.

e Strings with two characters

* No special case required; step two still applies
e Strings with a single character

* They are palindromes
e The empty string

* |tis apalindrome

11/14/16

Thinking Recursively: Step 4 (1)

* |Implement the solution by combining the simple cases and the
reduction step.

def isPalindrome(text) :
length = len(text)

if length <=1 :
return True
else :

first = text[0].lower()
last = text[length - 1].lower()

Continued

11/14/16 Page 20

Thinking Recursively: Step 4 (2)

if first.isalpha() and last.isalpha() :
if first == last :

shorter = text[1 : length - 1]
return isPalindrome(shorter)
else :
return False
elif not last.isalpha() :

shorter = text[0 : length - 1]
return isPalindrome(shorter)
else :

shorter = text[1 : length]
return isPalindrome(shorter)
11/14/16 Page 21

Recursive Helper functions

 Sometimes it is easier to find a recursive solution if you make a slight
change to the original problem.

e Consider the palindrome test of previous section.

 Itis a bit inefficient to construct new string objects in every step.

11/14/16

Substring Palindromes (1)

e Rather than testing whether the sentence is a palindrome, check
whether a substring is a palindrome:

Recursively tests whether a substring is

a palindrome.

@param text a string that is being checked

@param start the index of the first character of the substring
@param end the index of the last character of the substring

@return True if the substring is a palindrome

#

def substringIsPalindrome(text, start, end) :

11/14/16

Substring Palindromes (2)

* Then, simply call the helper function with positions that test the entire
string:

def isPalindrome(text) :
return substringIsPalindrome(text, 0, len(text) - 1)

11/14/16 Page 24

Recursive Helper function

def substringIsPalindrome(text, start, end) :
Separate case for substrings of length @ and 1.

if start >= end :
return True

else :
Get first and last characters, converted to lowercase.

first = text[start].lower()
last = text[end].lower()

Continued

11/14/16 Page 25

Recursive Helper Function

if first.isalpha() and last.isalpha()
if first == last :

return substringIsPalindrome
(text, start + 1, end - 1)
else :
return False
elif not last.isalpha() :

return substringIsPalindrome(text, start, end - 1)

else :

return substringIsPalindrome(text, start + 1, end)

11/14/16 Page 26

