
RECURSION

11/14/16 1

Chapter 11

Chapter Goals
•  To	learn	to	“think	recursively”	
•  To	be	able	to	use	recursive	helper	func5ons	

•  To	understand	the	rela5onship	between	recursion	and	itera5on	
•  To	understand	when	the	use	of	recursion	affects	the	efficiency	of	an	
algorithm		

•  To	analyze	problems	that	are	much	easier	to	solve	by	recursion	than	by	
itera5on		

•  To	process	data	with	recursive	structures	using	mutual	recursion	

11/14/16 Page 2

Contents
•  Triangle	Numbers	Revisited	

•  Problem	Solving:	Thinking	Recursively	

•  Recursive	Helper	Func5ons	
•  The	Efficiency	of	Recursion	

•  Permuta5ons	

•  Backtracking	
•  Mutual	Recursion	

11/14/16 Page 3

11.1 Triangle Numbers Revisited
•  Triangle	shape	of	side	length	4:	
[]

[][]

[][][]
[][][][]	

•  Will	use	recursion	to	compute	the	area	of	a	triangle	of	width	n	,	
assuming	each	[] square	has	an	area	of	1	

•  Also	called	the	nth	triangle	number		

•  The	third	triangle	number	is	6,	the		
fourth	is	10		

	

	

	

Page 4 11/14/16

Handling Triangle of Width 1
•  The	triangle	consists	of	a	single	square	
•  Its	area	is	1	
•  Take	care	of	this	case	first:	

	

11/14/16 Page 5

def	triangleArea(sideLength)	:	
				if	sideLength	==	1	:	
								return	1	
				.	.	.	

	

Handling The General Case
•  	Assume	we	know	the	area	of	the	smaller,	colored	triangle:	

 []
[][]
[][][]
[][][][] 	

•  	Area	of	larger	triangle	can	be	calculated	as		
 	

	

11/14/16 Page 6

area	=	smallerArea	+	sideLength	

smallerSideLength	=	sideLength	-	1	
smallerArea	=	triangleArea(smallerSideLength)	

•  	To	get	the	area	of	the	smaller	triangle	

•  	Call	the	triangleArea()	func5on:	

	

Computing the Area of a Triangle With Width 4

•  triangleArea()	func5on	makes	a	smaller	triangle	of	width	3		

•  It	calls	triangleArea()	on	that	triangle		

•  That	func5on	makes	a	smaller	triangle	of	width	2		

•  It	calls	triangleArea()	on	that	triangle		

•  That	func5on	makes	a	smaller	triangle	of	width	1		

•  It	calls	triangleArea()	on	that	triangle		

•  That	func5on	returns	1		

•  The	func5on	returns	smallerArea	+	sideLength =	1	+	2	=	3		

•  The	func5on	returns	smallerArea	+	sideLength	=	3	+	3	=	6		

•  The	func5on	returns	smallerArea	+	sideLength	=	6	+	4	=	10		

11/14/16 Page 7

Recursive Computation
•  A	recursive	computa.on	solves	a	problem	by	using	the	solu5on	to	the	
same	problem	with	simpler	inputs	

•  Call	paWern	of	a	recursive	func.on	is	complicated	

•  Key:	Don’t	think	about	it	

11/14/16 Page 8

Successful Recursion
•  	Every	recursive	call	must	simplify	the	computa5on		
	in	some	way		

•  	There	must	be	special	cases	to	handle	the	simplest	
	computa5ons	directly		

11/14/16 Page 9

Other Ways to Compute Triangle
Numbers

•  The	area	of	a	triangle	equals	the	sum:	

 1	+	2	+	3	+	...	+	sideLength		

•  Using	a	simple	loop:		

 area	=	0;	
for	i	in	range	(1,	(sideLength+1),	1)	:		
			area	=	area	+	i		

•  Using	math:		

 1	+	2	+	...	+	n	=	n	×	(n	+	1)/2		
			=>	n	*	(n	+	1)	/	2	

	

	

11/14/16 Page 10

Trianglenumbers.py

Page 11 11/14/16

Special Topic 11.1
•  An	Object-Oriented	version	of	the	triangles	program	

	
•  General	case:		compute	the	area	of	the	larger	triangle	as	
smallerArea	+	self._sideLength.	

•  To	get	the	smaller	area:	

Page 12

class	Triangle	
				def	_	_init_	_	(self,	sideLength)	:	
								self._sideLength	=	sideLength	
				def	getArea(self)	:	
								if	self._sideLength	==	1	:	
												return	1	
								.	.	.	

smallerTriangle	=	Triangle(self._sideLength	-	1)	
smallerArea	=	smallerTriangle.getArea()	
area	=	smallerArea	+	self._sideLength	

11/14/16

Common Error 11.1
•  Infinite	recursion:		

•  A	func5on	calling	itself	over	and	over	with	no	end	in	sight.		
•  The	computer	needs	some	amount	of	memory	for	bookkeeping	
during	each	call.		

•  Ader	some	number	of	calls,	all	memory	that	is	available	for	this	
purpose	is	exhausted.	

•  Your	program	shuts	down	and	reports	a	“stack	overflow”.	

•  Causes:	
•  The	arguments	don’t	get	simpler	or	because	a	special	termina5ng	
case	is	missing.	

Page 13 11/14/16

Thinking Recursively
•  	Problem:	Test	whether	a	sentence	is		
	a	palindrome	

•  	Palindrome:	A	string	that	is	equal	to	itself	
	when	you	reverse	all	characters	
•  A	man,	a	plan,	a	canal	–	Panama!		
•  Go	hang	a	salami,	I’m	a	lasagna	hog		
•  Madam,	I’m	Adam	

	

	

	
11/14/16 Page 14

Implement IsPalindrome() Function

Page 15

##	Tests	whether	a	string	is	a	palindrome.	
#	@param	text	a	string	that	is	being	checked	
#	@return	True	if	text	is	a	palindrome,	False	otherwise	
#	
def	isPalindrome(text)	:	
				.	.	.	

11/14/16

Thinking Recursively: Step 1
•  Consider	various	ways	to	simplify	inputs.	

•  Several	possibili5es:	

•  Remove	the	first	character	

•  Remove	the	last	character		

•  Remove	both	the	first	and	last	characters	

•  Remove	a	character	from	the	middle		

•  Cut	the	string	into	two	halves	

	

	

	

11/14/16 Page 16

Thinking Recursively: Step 2 (1)
•  Combine	solu5ons	with	simpler	inputs	into	a	solu5on	of	the	original	

problem.		

•  Most	promising	simplifica5on:	Remove	both	first	and	last	characters.		

•  	 “adam,	I’m	Ada”	is	a	palindrome	too!	

•  	Thus,	a	word	is	a	palindrome	if		

•  The	first	and	last	leGers	match,	and	

•  Word	obtained	by	removing	the	first	and	last	leGers	is	a	
palindrome	

	

	

	
11/14/16 Page 17

Thinking Recursively: Step 2 (2)
•  	What	if	first	or	last	character	is	not	a	leWer?		
	Ignore	it		

•  If	the	first	and	last	characters	are	leGers,	check	whether	they	
match;		if	so,	remove	both	and	test	shorter	string		

•  If	last	character	isn’t	a	leGer,	remove	it	and	test	shorter	string		

•  If	first	character	isn’t	a	leGer,	remove	it	and	test	shorter	string		

	

	

	

Page 18 11/14/16

Thinking Recursively: Step 3
•  	Find	solu5ons	to	the	simplest	inputs.		

•  Strings	with	two	characters		

•  No	special	case	required;	step	two	sMll	applies		

•  Strings	with	a	single	character		

•  They	are	palindromes	

•  The	empty	string		

•  It	is	a	palindrome		

	

	

	

Page 19 11/14/16

Thinking Recursively: Step 4 (1)
•  Implement	the	solu5on	by	combining	the	simple	cases	and	the	

reduc5on	step.		
	

	

	

	

Page 20

Continued

def	isPalindrome(text)	:	
				length	=	len(text)	
				#	Separate	case	for	shortest	strings.	
				if	length	<=	1	:	
								return	True	
				else	:	
								#	Get	first	and	last	characters,	converted	to					
								#	lowercase.	
								first	=	text[0].lower()	
								last	=	text[length	-	1].lower()	
	

11/14/16

Thinking Recursively: Step 4 (2)
							

	

	

	

Page 21

								#	Non	base	case	
								if	first.isalpha()	and	last.isalpha()	:	
												#	Both	are	letters.	
												if	first	==	last	:	
																#	Remove	both	first	and	last	character.	
																shorter	=	text[1	:	length	-	1]	
																return	isPalindrome(shorter)	
												else	:	
																return	False	
								elif	not	last.isalpha()	:	
												#	Remove	last	character.	
												shorter	=	text[0	:	length	-	1]	
												return	isPalindrome(shorter)	
								else	:	
												#	Remove	first	character.	
												shorter	=	text[1	:	length]	
												return	isPalindrome(shorter)	

11/14/16

Recursive Helper functions
•  Some5mes	it	is	easier	to	find	a	recursive	solu5on	if	you	make	a	slight	
change	to	the	original	problem.		

•  Consider	the	palindrome	test	of	previous	sec5on.	

•  It	is	a	bit	inefficient	to	construct	new	string	objects	in	every	step.	

	

	

	

11/14/16 Page 22

Substring Palindromes (1)
•  Rather	than	tes5ng	whether	the	sentence	is	a	palindrome,	check	
whether	a	substring	is	a	palindrome:		
	

	

	

	

	

11/14/16 Page 23

##	Recursively	tests	whether	a	substring	is	
#	a	palindrome.	
#	@param	text	a	string	that	is	being	checked	
#	@param	start	the	index	of	the	first	character	of	the	substring	
#	@param	end	the	index	of	the	last	character	of	the	substring	
#	@return	True	if	the	substring	is	a	palindrome	
#	
def	substringIsPalindrome(text,	start,	end)	:	

Substring Palindromes (2)
•  Then,	simply	call	the	helper	func5on	with	posi5ons	that	test	the	en5re	
string:		
	

	

	

	

11/14/16 Page 24

def	isPalindrome(text)	:	
				return	substringIsPalindrome(text,	0,	len(text)	–	1)	

Recursive Helper function

11/14/16 Page 25

Continued

def	substringIsPalindrome(text,	start,	end)	:	
				#	Separate	case	for	substrings	of	length	0	and	1.	
				if	start	>=	end	:	
								return	True	
				else	:	
				#	Get	first	and	last	characters,	converted	to	lowercase.	
								first	=	text[start].lower()	
								last	=	text[end].lower()	
					

Recursive Helper Function

11/14/16 Page 26

				if	first.isalpha()	and	last.isalpha()	:	
								if	first	==	last	:	
												#	Test	substring	that	doesn’t	contain	the	matching		
												#	letters.	
												return	substringIsPalindrome	
															(text,	start	+	1,	end	-	1)	
								else	:	
												return	False	
				elif	not	last.isalpha()	:	
								#	Test	substring	that	doesn’t	contain	the	last	character.	
								return	substringIsPalindrome(text,	start,	end	-	1)	
				else	:	
								#	Test	substring	that	doesn’t	contain	the	first		
								#	character.		
								return	substringIsPalindrome(text,	start	+	1,	end)	

