
Call Pattern of Recursive Fib()
Function

11/18/16 Page 35

Efficiency of Recursion
•  The	func)on	takes	so	long	because	it	computes	the	same	values	over	

and	over.		

•  Computa)on	of	fib(6)	calls	fib(3)	three)mes.	

•  Imitate	the	pencil-and-paper	process	to	avoid		
compu)ng	the	values	more	than	once.	

11/18/16 Page 36

Efficiency of Recursion
•  	Occasionally,	a	recursive	solu)on	runs	much	
	slower	than	its	itera)ve	counterpart.		

•  	In	most	cases,	the	recursive	solu)on	is	only	
	slightly	slower.		

•  	The	itera)ve	isPalindrome()	performs	only	
	slightly	be@er	than	recursive	solu)on.	

•  Each	recursive	func.on	call	takes	a	certain	amount	of	processor	.me		

11/18/16 Page 37

Loopfib.py	(1)	

Page 38 11/18/16

Loopfib.py	(2)	

Page 39 11/18/16

Memoized Fibonacci

11/18/16 Page 40

Efficiency of Recursion
•  Smart	compilers	can	avoid	recursive	func)on	calls	if	they	follow	simple	
pa@erns.		

•  Most	compilers	don’t	do	that			

•  In	many	cases,	a	recursive	solu)on	is	easier	to	understand	and	
implement	correctly	than	an	itera)ve	solu)on	.	

•  	‘To	iterate	is	human,	to	recurse	divine.’		
	-	L.	Peter	Deutsch		

Page 41 11/18/16

Iterative IsPalindrome()	Function

Page 42

def	isPalindrome(text)	:	
				start	=	0	
				end	=	len(text)	-	1	
				while	start	<	end	:	
								first	=	text[start].lower()	
								last	=	text[end].lower()	
								if	first.isalpha()	and	last.isalpha()	:	
												#	Both	are	letters.	
												if	first	==	last	:	
																start	=	start	+	1	
																end	=	end	-	1	
												else	:	
																return	False	
								if	not	last.isalpha()		
												end	=	end	-	1	

11/18/16

11.5 Permutations
•  Design	a	class	that	will	list	all	permuta)ons	of	string,	where	a	
permuta)on	is	a	rearrangement	of	the	le@ers		

•  The	string	"eat"	has	six	permuta)ons:	
•  "eat"	
•  "eta"		
•  "aet"	
•  "ate"	
•  "tea"	
•  "tae"	

11/18/16 Page 43

Generate All Permutations (1)
•  	Generate	all	permuta)ons	that	start	with	'e',	then	'a',	then	't'		

•  	The	string	"eat"	has	six	permuta)ons:	
•  "eat"	
•  "eta"		
•  "aet"	
•  "ate"	
•  "tea"	
•  "tae"	

11/18/16 Page 44

Generate All Permutations (2)
•  Generate	all	permuta)ons	that	start	with	'e',	then	'a',	then	't'

•  To	generate	permuta)ons	star)ng	with	'e',	we	need	to	find	all	
permuta)ons	of	"at"

•  This	is	the	same	problem	with	simpler	inputs		

•  Use	recursion		

11/18/16 Page 45

Implementing Permutations() Function

•  	Loop	through	all	posi)ons	in	the	word	to	be		
	permuted

•  	For	each	of	them,	compute	the	shorter	word		
	obtained	by	removing	the	ith	le@er:	
	

11/18/16 Page 46

shorter	=	word[:	i]	+	word[i	+	1	:]	

shorterPermutations	=	permutations(shorter)	

•  Compute	the	permuta)ons	of	the	shorter	word:	
	

Implementing Permutations()
Function
•  	Add	the	removed	le@er	to	the	front	of	all		
	permuta)ons	of	the	shorter	word:	

	

11/18/16 Page 47

for	s	in	shorterPermutations	:	
				result.append(word[i]	+	s)	

•  Special	case	for	the	simplest	string,	the	empty	
string,	which	has	a	single	permuta)on	-	itself	

	

Permutations.py (1)

Page 48 11/18/16

Permutations.py (2)

Page 49 11/18/16

Backtracking
•  Backtracking	examines	par)al	solu)ons,	abandoning	unsuitable	ones	
and	returning	to	consider	other	candidates	

•  Can	be	used	to	
•  solve	crossword	puzzles	

•  escape	from	mazes	

•  find	solu)ons	to	systems	that	are	constrained	by	rules	

11/18/16 Page 50

Backtracking Characteristic
Properties
1.  A	procedure	to	examine	a	par)al	solu)on	and	determine	whether	

to:	

I.  accept	it	as	an	actual	solu)on	or,	

II.  abandon	it	(because	it	either	violates	some	rules	or	can	never	lead	
to	a	valid	solu)on)	

2.  A	procedure	to	extend	a	par)al	solu)on,	genera)ng	one	or	more	
solu)ons	that	come	closer	to	the	goal	

11/18/16 Page 51

Recursive Backtracking Algorithm
Solve(partialSolution)	

					Examine(partialSolution).	

					If	accepted	

										Add	partialSolution	to	the	list	of	solutions.	

					Else	if	not	abandoned	

										For	each	p	in	extend(partialSolution)	

														Solve(p)	

11/18/16 Page 52

Eight Queens Problem
•  	Problem:	posi)on	eight	queens	on	a	chess	board	so	that		
	none	of	them	a@acks	another	according	to	the	rules	of		
	chess	

•  	A	solu)on:	

11/18/16 Page 53

Eight Queens Problem
•  	Easy	to	examine	a	par)al	solu)on:	

•  If	two	queens	a@ack	one	another,	reject	it	
•  Otherwise,	if	it	has	eight	queens,	accept	it	
•  Otherwise,	con)nue	

•  	Easy	to	extend	a	par)al	solu)on:	
•  Add	another	queen	on	an	empty	square	

•  	Systema)c	extensions:	

•  Place	first	queen	on	row	1	
•  Place	the	next	on	row	2	
•  Etc.	

11/18/16 Page 54

Function: Examine()

11/18/16 Page 55

def	examine(partialSolution)	:	
				for	i	in	range(0,	len(partialSolution))	:	
								for	j	in	range(i	+	1,	len(partialSolution))	:	
												if	attacks(partialSolution[i],		
															partialSolution[j])	:	
																return	ABANDON	
				if	len(partialSolution)	==	NQUEENS	:	
								return	ACCEPT	
				else	:	
								return	CONTINUE	

Function: Extend()

11/18/16 Page 56

def	extend(partialSolution)	:	
				results	=	[]	
				row	=	len(partialSolution)	+	1	
				for	column	in	"abcdefgh"	:	
								newSolution	=	list(partialSolution)	
								newSolution.append(column	+	str(row))	
								results.append(newSolution)	
				return	results	

Diagonal Attack
•  To	determine	whether	two	queens	a@ack	each	other	diagonally:	

•  Check	whether	slope	is	±1	

(row2	–	row1)/(column2	–	column1)	=	±1	

	row2	–	row1	=	±(column2	–	column1)	

	row2	–	row1|	=	|column2	–	column1|			

	

11/18/16 Page 57

Backtracking in the Four Queens Problem (1)

11/18/16 Page 58

Backtracking in the Four Queens Problem (2)

•  	Star)ng	with	a	blank	board,	four	par)al	solu)ons	with	a		
	queen	in	row	1		

•  	When	the	queen	is	in	column	1,	four	par)al	solu)ons	with	a	queen	in	
row	2	

•  Two	are	abandoned	immediately	

•  Other	two	lead	to	par)al	solu)ons	with	three	queens							and							,	
all	but	one	of	which	are	abandoned	

•  	One	par)al	solu)on	is	extended	to	four	queens,	but	all	of		
	those	are	abandoned	as	well		

11/18/16 Page 59

Queens.py

Page 60 11/18/16

Queens.py

Page 61 11/18/16

Queens.py

Page 62 11/18/16

11.7 Mutual Recursion
•  	Problem:	Compute	the	value	of	arithme)c	expressions		
	such	as:	

 3 + 4 * 5
(3 + 4) * 5
1 - (2 - (3 - (4 - 5)))

•  	Compu)ng	the	expression	is	complicated	

•  *	and	/ bind	more	strongly	than	+ and	–

•  Parentheses	can	be	used	to	group	sub-expressions	

11/18/16 Page 63

Syntax Diagrams for Evaluating an Expression

11/18/16 Page 64

Mutual Recursion
•  	An	expression	can	be	broken	down	into	a	sequence	of	terms,	
separated	by	+	or	–		

•  	Each	term	is	broken	down	into	a	sequence	of	factors,		
	separated	by	*	or	/

•  	Each	factor	is	either	a	parenthesized	expression	or	a		
	number		

•  	The	syntax	trees	represent	which	opera)ons	should	be		
	carried	out	first		

11/18/16 Page 65

Syntax Trees for Two Expressions

11/18/16 Page 66

Mutual Recursion
•  In	a	mutual	recursion,	a	set	of	coopera)ng	func)ons	calls	each	other	
repeatedly		

•  To	compute	the	value	of	an	expression,	implement	3	func)ons	that	call	
each	other	recursively:		

•  	expression()

•  	term()

•  	factor()

11/18/16 Page 67

Function: Expression()	

11/18/16 Page 68

def	expression(tokens)	:	
				value	=	term(tokens)	
				done	=	False	
				while	not	done	and	len(tokens)	>	0	:	
								next	=	tokens[0]	
								if	next	==	"+"	or	next	==	"-"	:	
												tokens.pop(0)			#	Discard	"+"	or	"-"	
												value2	=	term(tokens)	
												if	next	==	"+"	:	
																value	=	value	+	value2	
												else	:	
																value	=	value	-	value2	
								else	:	
												done	=	True	
	
return	value	

Function: Term()	
•  The	term()	func)on	calls	factor()	in	the	same	way,	mul)plying	or	
dividing	the	factor	values

11/18/16 Page 69

def	term(tokens)	:	
				value	=	factor(tokens)	
				done	=	False	
				while	not	done	and	len(tokens)	>	0:	
								next	=	tokens[0]	
								if	next	==	"*"	or	next	==	"/"	:	
												tokens.pop(0)	
												value2	=	factor(tokens)	
												if	next	==	"*"	:	
																value	=	value	*	value2	
												else	:	
																value	=	value	/	value2	
							else	:	
											done	=	True	
	
return	value	

Function: Factor()

11/18/16 Page 70

def	factor(tokens)	:	
				next	=	tokens.pop(0)	
				if	next	==	"("	:	
								value	=	expression(tokens)	
								tokens.pop(0)			#	Discard	")"	
				else	:	
								value	=	next	
	
				return	value	

Trace (3	+	4)	*	5

11/18/16 Page 71

To see the mutual recursion clearly, trace through the expression (3+4)*5:		

•  expression()	calls	term()		

•  term()	calls	factor()		

•  factor()	consumes	the	(input		

•  factor()	calls	expression()		

•  expression()	returns	eventually	with	the	value	of	7,	
having	consumed	3	+	4.	This	is	the	recursive	call.		

•  factor()	consumes	the)	input		

•  factor()	returns	7		

•  term()	consumes	the	inputs	*	and	5	and	returns	35		

•  expression()	returns	35		

Evaluator.py (1)

11/18/16 Page 72

Evaluator.py

11/18/16 Page 73

Evaluator.py

Page 74 11/18/16

Evaluator.py

Page 75 11/18/16

Summary
•  Understand	the	control	flow	in	a	recursive	computa)on.	

•  A	recursive	computa)on	solves	a	problem	by	using	the	solu)on	to	
the	same	problem	with	simpler	inputs.	

•  For	a	recursion	to	terminate,	there	must	be	special	cases	for	the	
simplest	values.	

•  Design	a	recursive	solu)on	to	a	problem.	

11/18/16 Page 76

Summary
•  Iden)fy	recursive	helper	func)ons	for	solving	a	problem.	

•  Some)mes	it	is	easier	to	find	a	recursive	solu)on	if	you	make	a	slight	
change	to	the	original	problem.	

•  Contrast	the	efficiency	of	recursive	and	non-recursive	algorithms.	
•  Occasionally,	a	recursive	solu)on	runs	much	slower	than	its	itera)ve	
counterpart.	However,	in	most	cases,	the	recursive	solu)on	is	only	
slightly	slower.	

•  In	many	cases,	a	recursive	solu)on	is	easier	to	understand	and	
implement	correctly	than	an	itera)ve	solu)on.	

11/18/16 Page 77

Summary
•  Review	a	complex	recursion	example	that	cannot	be	solved	with	a	
simple	loop.	
•  The	permuta)ons	of	a	string	can	be	obtained	more	naturally	through	
recursion	than	with	a	loop.	

•  Use	backtracking	to	solve	problems	that	require	trying	out	mul)ple	
paths.	
•  Backtracking	examines	par)al	solu)ons,	abandoning	unsuitable	ones	
and	returning	to	consider	other	candidates.	

11/18/16 Page 78

Summary
•  Recognize	the	phenomenon	of	mutual	recursion	in	an	expression	
evaluator.	
•  In	a	mutual	recursion,	coopera)ng	func)ons	or	methods	call	each	
other	repeatedly.	

11/18/16 Page 79

