NUMPY
CS 010

Desien and Implementation of

N DN 1O

MODULES EXTEND PYTHON

¢® Examples
® ezgraphics
® enabled us to draw pictures
® re
® regular expression module

® our own imported code

® CombolLock

N DN -1 () N\

VERY WIDELY USED PYTHON EXTENSIONS

® Numpy

® An n-dimensional matrix library
® Scipy

® scientific computing library
® Matplotlib

® 2D plots and graphs

\

THE BASICS

® The main thing that Numpy does is handle n-
dimensional matrices
® homogenous
® all the elements are the same type
® We saw python to this natively with “tables”
® lists of lists
® Numpy does it more efficiently and with an easier

programming interface

® Numpy is not installed when you install python

® Jt is a module or “extension”

® Python comes with several different extension
management systems
® These simplify the process of adding extensions to

your hard drive

® You can download an extension as a “.py” file, but your

python programs might not be able to find them
® a package manager puts the file in the right place so
that it can be found

® pip3 is a python manager for python3

$ pip3 install numpy
Collecting numpy

Downloading numpy-1.11l.2-cp35-cp35m-macosx 10 6 intel.macosx 10 9 intel.macosx 10 9 x86 64.ma
cosx_10_ 10 intel.macosx 10 10 x86 64.whl (3.9MB)

100% |INEEEEEEEEEEEEEEENEENNENNENEEEEN | 3.9MB 156kB/s

Installing collected packages: numpy
Successfully installed numpy-1.11.2
You are using pip version 8.1.2, however version 9.0.1 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.

]

'S pip3 --help

Usage:
pip <command> [options]

Commands:
install
download
uninstall
freeze
list
show
check
search
wheel
hash
completion
help

General Options:
-h, =--help
--isolated

-v, =--verbose
-V, --version

-q, --quiet

--log <path>
--pProxy <proxy>
--retries <retries>

--timeout <sec>
--exists-action <action>

--trusted-host <hostname>

--cert <path>
--client-cert <path>

--cache-dir <dir>
--no-cache-dir
--disable-pip-version-check

Install packages.

Download packages.

Uninstall packages.

Output installed packages in requirements format.
List installed packages.

Show information about installed packages.

Verify installed packages have compatible dependencies.
Search PyPI for packages.

Build wheels from your requirements.

Compute hashes of package archives.

A helper command used for command completion.
Show help for commands.

Show help.

Run pip in an isolated mode, ignoring environment variables and
user configuration.

Give more output. Option is additive, and can be used up to 3
times.

Show version and exit.

Give less output. Option is additive, and can be used up to 3
times (corresponding to WARNING, ERROR, and CRITICAL logging
levels).

Path to a verbose appending log.

Specify a proxy in the form [user:passwd@]proxy.server:port.
Maximum number of retries each connection should attempt
(default 5 times).

Set the socket timeout (default 15 seconds).

Default action when a path already exists: (s)witch, (i)gnore,
(w)ipe, (b)ackup, (a)bort.

Mark this host as trusted, even though it does not have valid
or any HTTPS.

Path to alternate CA bundle.

Path to SSL client certificate, a single file containing the
private key and the certificate in PEM format.

Store the cache data in <dir>.

Disable the cache.

Don't periodically check PyPI to determine whether a new
version of pip is available for download. Implied with --no-

https://docs.scipy.org/doc/numpy-dev/user/

quickstart.html

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

NDARRAY

® ndarray.ndim

® the number of axes (dimensions) of the array.
® ndarray.shape
® the dimensions of the array. This is a tuple of
integers indicating the size of the array in each
dimension. For a matrix with n rows and m columns,
shape will be (n,m). The length of the shape tuple is

therefore the rank, or number of dimensions, ndim.

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

\

NDARRAY

® ndarray.size
® the total number of elements of the array. This is
equal to the product of the elements of shape.
® ndarray.dtype
® an object describing the type of the elements in the
array.

® ndarray.itemsize

® the size in bytes of each element of the array.

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

\

NDARRAY

® ndarray.data
® the buffer containing the actual elements of the
array. Normally, we won’t need to use this attribute
because we will access the elements in an array

using indexing facilities.

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

A

>>> import numpy as np

>>> ¢ = np.array([[1,2,3,4,5),[6,7,8,9,10])])
EXAM PLES >>> c.size

10

>>> c.shape

(2, 5)

>>> ¢ = np.array([[1,2,3,4,5),[6,7,8,9,10])])

>>> c.ndim

2

>>> c.shape

(2, 5)

>>> c.size

10

>>> c.dtype

dtype('inté64"')

>>> c.dtype.name

'int64’

>>> c.iltemsize

8

>>> c.data

<memory at 0x104030048>
>>> [

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

N UM F

® ndarray.array

® The easiest way is to leverage standard python
® The type of the resulting array is deduced from the

type of the elements in the sequences.

>>> import numpy as np

>>> a = np.array([2,3,4])
>>> a

array([2, 3, 4])

>>> a.dtype

dtype('int64"')

>>> b = np.array([1l.2, 3.5,
>>> b.dtype

dtype('floaté6d’)

5.1])

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

NUMPY - ARRA @)\

® A frequent error consists in calling array with multiple
numeric arguments, rather than providing a single list
of numbers as an argument.

>>> a = np.array(1,2,3,4) ¥ WRONG
>>> a = np.array([1,2,3,4]) # RIGHT

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

NUMPY - ARRA @)\

® array transforms sequences of sequences into two-
dimensional arrays, sequences of sequences of

sequences into three-dimensional arrays, and so on.

>>> b = np.array([(1.5,2,3), (4,5,6)1])
>>> b
arrav(f[1.5, 2. , 3.],

[4. , 5. , 6.]1)

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

\ A'A

® The type of the array can also be explicitly specified at

creation time:

>>> ¢ = np.array([[1,2], [3,4]], dtype=complex)
>>> ¢
array([[1.40.3, 2.40.3],

[3.40.3, 4.+0.3]1)

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

\

® Ofiten, the elements of an array are originally unknown, but
its size is known. Hence, NumPy offers several functions to
create arrays with initial placeholder content. These
minimize the necessity of growing arrays, an expensive
operation.

® The function zeros creates an array full of zeros, the function
ones creates an array full of ones, and the function empty
creates an array whose initial content is random and
depends on the state of the memory. By default, the dtype of

the created array is float64.

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

>2>>

>>> np.zeros((3,4))

array([f 0., 0., 0., 0.1,
[Oy 0., 0., 0.];
[0., 0., 0., 0.]1)

>>> np.ones((2,3,4), dtype=np.intlé) ¥ dtype can also be spe
cified
arrayv([[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 11]),
If 1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]]1], dtype=intl6)
>>> np.empty((2,3)) # uninitialized, output
may vary

array([[3.73603959%9e-262, 6.02658058e~154, 6.55490914e-260],
[5.30498948e-313, 3.14673309%e-307, 1.00000000e+000711)

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

N\)N

® To create sequences of numbers, NumPy provides a function

analogous to range that returns arrays instead of lists

>>> np.arange(10, 30, 5)

array([10, 15, 20, 25])

>>> np.arange(0, 2, 0.3) ¥ 1t accepts float arguments
array(f 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

NUMPY - ARRA @)\

® When arange is used with floating point arguments, it is
generally not possible to predict the number of elements
obtained, due to the finite floating point precision. For this
reason, it is usually better to use the function linspace that
receives as an argument the number of elements that we

want, instead of the step:

>>> from numpy import pi 7
>>> np.linspace(0, 2, 9) # 9 numbers from 0 to 2

array(f 0. , 0.25, 0.5 , 0.75, 1. , 1l.25, 1.5 , 1.75, 2. 1)

>>> x = np.linspace(0, 2*pi, 100) # useful to evaluate function at 1

ots of points

>>> f = np.sin(x)

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

AL
AT
ainins

WESTMONT

JIMF

