
GIT TUTORIAL

Creative Software Architectures for
Collaborative Projects
CS 130
Donald J. Patterson

SOFTWARE CONFIGURATION MANAGEMENT
SOURCE CODE MANAGEMENT

• Generic term for the ability to manage multiple versions of

• a document

• a collection of documents

SCM

“BUILT-IN” EXAMPLES
• Microsoft Word

• backup copies or “auto-save”

• MAC OS X

• Time Machine

• Revision Management

• Wikipedia

• Page History

• Google Docs

• Change History

SOFTWARE CONFIGURATION MANAGEMENT

SOFTWARE CONFIGURATION MANAGEMENT

GENERAL

• Backups

• Restore against disaster

• Robust backups

• Restore against vandalism

• Backups for collections

• Recognizing the dependencies between files

• Preferences and configuration files also

MOTIVATION

SOFTWARE AS A SPECIFIC CASE
• A “version” of software refers to a collection of files

• source code

• graphics assets

• project build configuration files

• libraries

• These have to all be in sync or the project won’t build

and run

MOTIVATION

SOFTWARE AS A SPECIFIC CASE
• At the same time multiple versions are in the wild

• A version that has been released

• A version that is being worked on by developers for

the next release

• A customized version for a specific client

• A version that was “forked” to go in a different

conceptual direction

MOTIVATION

• One could just keep a complete copy of all files for each

release

• However this means many nearly-identical copies are

being kept

• Requires a lot of discipline on the part of an

organization to archive and organize

• Careful permissions need to be managed for access to

read versus write versus copy

• In some cases intellectual property also needs to be

tracked

MULTIPLE VERSIONS OF SOFTWARE

STAND-ALONE EXAMPLES
• Version Control Systems

• Support check-in and change management of files in general

• Automate the management of the software

• Examples

• subversion (svn)

• Bit Keeper

• Mercurial

• Git

• Git Hub

SOFTWARE CONFIGURATION MANAGEMENT

AVOIDS “DEPENDENCY HELL”
• Libraries save enormous amounts of space

• When you want to release a new version of a piece of software

that depends on other software that is also constantly releasing

new versions.

• Without a consistent way of understanding how versions

change you might have to keep a separate version of every

library for every thing that depends on it

SEMANTIC VERSIONING

http://semver.org/

A NUMBERING SCHEME FOR LINEAR CHANGES
• Given a version number MAJOR.MINOR.PATCH, increment the:

• MAJOR version when you make incompatible API changes,

• MINOR version when you add functionality in a backwards-

compatible manner, and

• PATCH version when you make backwards-compatible bug

fixes.

SEMANTIC VERSIONING

http://semver.org/

MAJOR.MINOR.PATCH

4

4.0

4.0.0 4.0.1

4.1

4.1.0 4.1.1 4.1.2

5

5.0

5.0.0 5.0.1

5.1

5.1.0 5.1.1 5.1.2

a whole collection of files

• This is for releases

• Less helpful for active developing of

the files

• Repository

• A location where files and their history are kept

• Checking Out

• Obtaining a copy of the file(s) in the repository

• Working copy

• The copy of the files that you have checked out

• Checking in or “Committing”

• Returning changed files to a repository

TERMS

• Branching

• When files have a common parent but are being

changed in parallel

• Merging

• Combining branches into one common descendent

• Conflict

• When merging can’t be done automatically

• Resolve

• Fix conflicts

TERMS

1

2

3

4

5

6

7

89

10

T1

T2

Trunk Branch

Merge

Release Branch

Merge

Release
Fork

Time

• Over time changes to a source code repository

• are not a “linked list” because of branches

• are not a “tree” because of merges

• are not a “directed graph” because time

prevents cycles

• are a “directed acyclical graph” or DAG

REPRESENTATION

1

2

3

4

5

6

7

89

10

T1

T2

• Clone

• Copying an entire repository, history and all

• Delta compression

• Only keeping information about changes between each

branch, commit or merge

• Tag

• To label a commit for future reference

• Push and Pull

• Sync repositories with each other

TERMS

• How did we get to where we are today?

• rcs ci/co (cerca 1980)

• cvs (cerca 1986)

• svn (cerca 2004)

• git (cerca 2005)

• github (cerca 2009)

HISTORICAL PERSPECTIVE

https://www.gnu.org/software/rcs/
http://linux.die.net/man/1/cvs
http://svnbook.red-bean.com/
https://git-scm.com/
https://github.com

GUI FOR GIT

• https://www.atlassian.com/software/sourcetree

TOOLS

https://www.atlassian.com/software/sourcetree

ACCOUNT ON GITHUB

• https://github.com/

TOOLS

• Let’s look at a project in the wild

• bitcoin

CODE IN THE WILD

HOW ARE WE GOING TO USE GIT?

• We will establish a project

• All code will be in the same repository

• Each team can make pull requests that focus on

their components

EXERCISE

• Version Control on Wikipedia

• https://en.wikipedia.org/wiki/Version_control

• git tutorial on github

• https://try.github.io/levels/1/challenges/1

• git tutorial on codecademy

• https://www.codecademy.com/learn/learn-git

MORE INFORMATION

https://en.wikipedia.org/wiki/Version_control
https://try.github.io/levels/1/challenges/1
https://www.codecademy.com/learn/learn-git

