GIT TUTORIAL

Creative Software Architectures for

e

_

SOFTWARE CONFIGURATION MANAGEMENT
SOURCE CODE MANAGEMENT

® Generic term for the ability to manage multiple versions of
® a document

® Aa collection of documents

- @)\

“BUILT-IN” EXAMPLES

® Microsoft Word
® backup copies or “auto-save”
® MAC OS X
® Time Machine
® Revision Management
® Wikipedia
® Page History
® Google Docs

® Change History

@ Keynote MiCM Edit Insert Slide Format Arrange View

@ New... 3N

0 v 81% v Open... &0

Open Recent B

View Zoom y Flip Horizontal Table

Close $EW
Save 38S
Duplicate {+38S
Rename...

Move To...

" Last Saw fay, 10:63_

Export To Last Opened — Today, 10:58
Browse All Versions...

Advanced

Set Password...

Change Theme...
Save Theme...

Print...

M ()

GENERAL

® Backups
® Restore against disaster
® Robust backups
® Restore against vandalism
® Backups for collections
® Recognizing the dependencies between files

® Preferences and configuration files also

M () AlICON

SOFTWARE AS A SPECIFIC CASE

® A “version” of software refers to a collection of files
® source code

® graphics assets

® project build configuration files

® libraries

® These have to all be in sync or the project won’t build

and run

M () AlTON

SOFTWARE AS A SPECIFIC CASE

® At the same time multiple versions are in the wild
® A version that has been released
® A version that is being worked on by developers for
the next release
® A customized version for a specific client
® A version that was “forked” to go in a different

conceptual direction

\ ®)) - aa

® One could just keep a complete copy of all files for each
release
® However this means many nearly-identical copies are
being kept
® Requires a lot of discipline on the part of an
organization to archive and organize
® (Careful permissions need to be managed for access to

read versus write versus copy

® [n some cases intellectual property also needs to be

tracked

STAND-ALONE EXAMPLES

® Version Control Systems

® Automate the management of the software

@)\

Support check-in and change management of files in general

® Examples

subversion (svn)
Bit Keeper
Mercurial

Git

Git Hub

COININ

AVOIDS “DEPENDENCY HELL"

® Libraries save enormous amounts of space

® When you want to release a new version of a piece of software
that depends on other software that is also constantly releasing
new versions.

® Without a consistent way of understanding how versions
change you might have to keep a separate version of every

library for every thing that depends on it

CO)INLTN

A NUMBERING SCHEME FOR LINEAR CHANGES

® Given a version number MAJOR.MINOR.PATCH, increment the:
® MAJOR version when you make incompatible API changes,
® MINOR version when you add functionality in a backwards-
compatible manner, and

® PATCH version when you make backwards-compatible bug
Latest releases in each branch of Perl

fixes.
Major Version Type Released Download
5.25 5.254 Devel 2016-08-20 perl-5.25.4.tar.gz
. for Mac OS) | 524 5.24.0 Maint 2016-05-09 perl-5.24.0.tar.gz
load the latest versl on 522 5222 Maint 2016-04-29 perl-5.22.2.tar.gz
Down 5.20 5.20.3 End of life 2015-08-12 perl-5.20.3.tar.gz
5.18 5.184 End of life 2014-10-02 perl-5.18.4.tar.gz
thon 2.7.12 5.16 5.16.3 End of life 2013-03-11 perl-5.16.3.tar.gz
Download Python 352 pDownload Py 5.14 5.14.4 End of life 2013-03-10 per-5.14.4.tar.gz
5.12 5.125 End of life 2012-11-10 perl-5.12.5.tar.gz
5.10 5.10.1 End of life 2009-08-23 perl-5.10.1.tar.gz
58 58.9 End of life 2008-12-14 perl-5.8.9.tar.gz
56 5.6.2 End of life 2003-11-15 perl-5.6.2.tar.gz
55 5.5.4 End of life 2004-02-23 perl5.005_04.tar.gz
54 545 End of life 1999-04-29 perl5.004_05.tar.gz

N N

4.0 4.1 5.0 5.1

NN BN B N B

400 —» 4.01 —» 41.0 412 —»| 5.00 —» 5.0.1 — 5.1.0

5.1.2

® This is for releases

® Less helpful for active developing of

a whole collection of files

the files

Repository

® A location where files and their history are kept
Checking Out

® Obtaining a copy of the file(s) in the repository
Working copy

® The copy of the files that you have checked out
Checking in or “Committing”

® Returning changed files to a repository

Branching

® When files have a common parent but are being
changed in parallel

Merging

® Combining branches into one common descendent

Conflict

® When merging can’t be done automatically

Resolve

® FKix conflicts

Time

Trunk

Release 3

v

N

Branch

2

!

4

T1

Release/

Merge

5

/4

12

10

@Aranch

Fork

® Over time changes to a source code repository

® are not a “linked list” because of branches

® are not a “tree” because of merges

® are not a “directed graph” because time
prevents cycles

® are a “directed acyclical graph” or DAG

T

T2

10

Clone

® Copying an entire repository, history and all

Delta compression

® Only keeping information about changes between each
branch, commit or merge

Tag

® To label a commit for future reference

Push and Pull

® Sync repositories with each other

® How did we get to where we are today?

rcs ci/co (cerca 1980)

cvs (cerca 1986)
svn (cerca 2004)
git (cerca 2005)
github (cerca 2009)

https://www.gnu.org/software/rcs/
http://linux.die.net/man/1/cvs
http://svnbook.red-bean.com/
https://git-scm.com/
https://github.com

GUI FOR GIT

® https://www.atlassian.com/software/sourcetree

@ SourceTree

https://www.atlassian.com/software/sourcetree

ACCOUNT ON GITHUB

® https://github.com/

GitHub

\

® Let’s look at a project in the wild

® bitcoin

HOW ARE WE GOING TO USE GIT?

® We will establish a project
® All code will be in the same repository
® Each team can make pull requests that focus on

their components

MO K

® Version Control on Wikipedia

® https://en.wikipedia.org/wiki/Version_control

® git tutorial on github

® https://try.github.io/levels/1 /challenges/1

® git tutorial on codecademy

® https://www.codecademy.com/learn/learn-git

https://en.wikipedia.org/wiki/Version_control
https://try.github.io/levels/1/challenges/1
https://www.codecademy.com/learn/learn-git

AL
AT
ainins

WESTMONT

JIMF

