
GITHUB TUTORIAL

Creative Software Architectures for
Collaborative Projects
CS 130
Donald J. Patterson

PREPARE YOUR LOCAL SYSTEM TO RECEIVE
• Identify the workspace that you want to use for

development on your hard drive

• “Where do you want to put the files?”

GET A COPY OF THE REPOSITORY

FORK THE REPOSITORY ON GITHUB
• Log in to Github

• Find the correct repository and “fork it”

GET A COPY OF THE REPOSITORY

FORK THE REPOSITORY ON GITHUB
• Log in to Github

• Find the correct repository and “fork it”

• This is going to create a copy of this repository in your

own github account

GET A COPY OF THE REPOSITORY

CLONE YOUR FORK
• On your computer, using git (or SourceTree), clone

your github forked project from URL

• Make the destination path a directory in your eclipse

workspace

• Make the name something that you can remember

for importing in Eclipse

• /Users/djp3/Documents/ClassResources/

2016_09_CS130/eclipseWorkspace/github-tutorial

GET A COPY OF THE REPOSITORY

CLONE YOUR FORK
• On your computer, using git (or SourceTree), clone

your github forked project from URL

• Make the destination path a directory in your eclipse

workspace

• Make the name something that you can remember

for importing in Eclipse

• /Users/djp3/Documents/ClassResources/

2016_09_CS130/eclipseWorkspace/github-tutorial

GET A COPY OF THE REPOSITORY

IMPORT THE REPO INTO ECLIPSE
• Open Eclipse

• Create a new Java project at the location where you

checked out the remote repository.

• This will cause Eclipse to use the same files that git

(via SourceTree) is keeping up to date

SETUP ECLIPSE

CONVERT TO A MAVEN PROJECT
• Maven is a system for compiling java projects from the

command line

• We need it to work with some other tools

SETUP ECLIPSE

ADD THE ORIGINAL GITHUB REPO
• In SourceTree add the original project as a remote

repository

• the one you forked from

GET THE WORKFLOW READY

START CODING
• Use the GitHub workflow

GET THE WORKFLOW READY

https://guides.github.com/introduction/flow/index.html

• When you're working on a project, you're going to have a

bunch of different features or ideas in progress at any given

time – some of which are ready to go, and others which are

not. Branching exists to help you manage this workflow.

GITHUB WORKFLOW - CREATE A BRANCH

ticket_001

https://guides.github.com/introduction/flow/index.html

https://guides.github.com/introduction/flow/index.html

• When you create a branch in your project, you're creating an

environment where you can try out new ideas. Changes you

make on a branch don't affect the master branch, so you're

free to experiment and commit changes, safe in the knowledge

that your branch won't be merged until it's ready to be

reviewed by someone you're collaborating with.

GITHUB WORKFLOW - CREATE A BRANCH

ticket_001

https://guides.github.com/introduction/flow/index.html

https://guides.github.com/introduction/flow/index.html

• Branching is a core concept in Git, and the entire GitHub Flow

is based upon it. There's only one rule: anything in the master

branch is always deployable.

• Your branch name should be descriptive (e.g., refactor-

authentication, user-content-cache-key, make-retina-avatars),

so that others can see what is being worked on.

GITHUB WORKFLOW - CREATE A BRANCH

ticket_001

https://guides.github.com/introduction/flow/index.html

GITHUB WORKFLOW - ADD COMMITS

• Once your branch has been created, it's time to start making

changes. Whenever you add, edit, or delete a file, you're

making a commit, and adding them to your branch. This

process of adding commits keeps track of your progress as you

work on a feature branch.

https://guides.github.com/introduction/flow/index.html

https://guides.github.com/introduction/flow/index.html

GITHUB WORKFLOW - ADD COMMITS

• Commits also create a transparent history of your work that others

can follow to understand what you've done and why. Each commit

has an associated commit message, which is a description

explaining why a particular change was made. Furthermore, each

commit is considered a separate unit of change. This lets you roll

back changes if a bug is found, or if you decide to head in a

different direction.https://guides.github.com/introduction/flow/index.html

https://guides.github.com/introduction/flow/index.html

GITHUB WORKFLOW - ADD COMMITS

• Commit messages are important, especially since Git tracks

your changes and then displays them as commits once they're

pushed to the server. By writing clear commit messages, you

can make it easier for other people to follow along and provide

feedback.

https://guides.github.com/introduction/flow/index.html

https://guides.github.com/introduction/flow/index.html

GITHUB WORKFLOW - PULL REQUEST

• Pull Requests initiate discussion about your commits. Because

they're tightly integrated with the underlying Git repository,

anyone can see exactly what changes would be merged if they

accept your request.

https://guides.github.com/introduction/flow/index.html

https://guides.github.com/introduction/flow/index.html

GITHUB WORKFLOW - CODE REVIEW

• Once a Pull Request has been opened, the person or team

reviewing your changes may have questions or comments.

Perhaps the coding style doesn't match project guidelines, the

change is missing unit tests, or maybe everything looks great

and props are in order. Pull Requests are designed to

encourage and capture this type of conversation.

https://guides.github.com/introduction/flow/index.html

https://guides.github.com/introduction/flow/index.html

GITHUB WORKFLOW - CODE REVIEW

https://guides.github.com/introduction/flow/index.html

• You can also continue to push to your branch in light of

discussion and feedback about your commits. If someone

comments that you forgot to do something or if there is a bug

in the code, you can fix it in your branch and push up the

change. GitHub will show your new commits and any

additional feedback you may receive in the unified Pull

Request view.

https://guides.github.com/introduction/flow/index.html

GITHUB WORKFLOW - DEPLOY

• Once your pull request has been reviewed and the branch

passes your tests, you can deploy your changes to verify them

in production.

https://guides.github.com/introduction/flow/index.html

https://guides.github.com/introduction/flow/index.html

GITHUB WORKFLOW - MERGE

• Now that your changes have been verified in production, it is

time to merge your code into the master branch.

• Once merged, Pull Requests preserve a record of the historical

changes to your code. Because they're searchable, they let

anyone go back in time to understand why and how a decision

was made.https://guides.github.com/introduction/flow/index.html

https://guides.github.com/introduction/flow/index.html

GITHUB WORKFLOW - X PATTERN

team leader
Github repository

your Github
repository

your repository
where you are

developing

Pull Push

Pull requestteamate’s Github
repository

teamate’s
repository

where s/he is
developing

PullPush

Pull request

repository
where leader is

developing

Pull Push Pull

BASIC PROCESS

Update your code from the official repository - pull from master

Branch from master in order to start working on your code

Write your code

Write tests for your code

Commit your changes as you are making discrete progress

When you are done with your assignment, push to your github repo

Initiate a Pull Request from the official repository

Official repository merges your branch into the master branch

