
ABSTRACTION ISN’T THE
ENTIRE STORY
CS 045

Computer Organization and
Architecture

Prof. Donald J. Patterson
Adapted from Bryant and O’Hallaron,
Computer Systems:
A Programmer’s Perspective, Third Edition

OVERVIEW
• Course Theme

• Five Realities

• General System Walkthrough

ABSTRACTION ISN’T THE ENTIRE STORY

OVERVIEW
• Course Theme

• Five Realities

• General System Walkthrough

ABSTRACTION ISN’T THE ENTIRE STORY

ABSTRACTION IS GOOD BUT DON’T
FORGET REALITY
• Most Computer Science courses emphasize abstraction

• Abstract data types

• Asymptotic analysis

• These abstractions have limits

• Especially in the presence of bugs

• We need to understand details of underlying
implementations

• Useful outcomes from taking 45

• Become more effective programmers

• Able to find and eliminate bugs efficiently

• Able to understand and tune for program
performance

COURSE THEME

OVERVIEW
• Course Theme

• Five Realities

• General System Walkthrough

ABSTRACTION ISN’T THE ENTIRE STORY

OVERVIEW
• Course Theme

• Five Realities

• General System Walkthrough

ABSTRACTION ISN’T THE ENTIRE STORY

• Example 1: Is ?

• Floats?

• Yes!

• Ints?

• 40,000 * 40,000 -> 1,600,000,000

• 50,000 * 50,000 -> No (why?)

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

REALITY #1

x

2 � 0

• Example 1: Is ?

• Floats?

• Yes!

• Ints?

• 40,000 * 40,000 -> 1,600,000,000

• 50,000 * 50,000 -> No (why?)

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

REALITY #1

x

2 � 0

• Example 1: Is ?

• Floats?

• Yes!

• Ints?

• 40,000 * 40,000 -> 1,600,000,000

• 50,000 * 50,000 -> No (why?)

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

REALITY #1

x

2 � 0

• Example 1: Is ?

• Floats?

• Yes!

• Ints?

• 40,000 * 40,000 -> 1,600,000,000

• 50,000 * 50,000 -> No (why?)

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

REALITY #1

x

2 � 0

• Example 1: Is ?

• Floats?

• Yes!

• Ints?

• 40,000 * 40,000 -> 1,600,000,000

• 50,000 * 50,000 -> No (why?)

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

REALITY #1

x

2 � 0

• Example 1: Is ?

• Floats?

• Yes!

• Ints?

• 40,000 * 40,000 -> 1,600,000,000

• 50,000 * 50,000 -> No (why?)

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

REALITY #1

x

2 � 0

• Example 2:

• Ints?

• Yes!

• Floats?

• (1e20 + -1e20) + 3.14 --> 3.14

• 1e20 + (-1e20 + 3.14) --> No (why?)

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

REALITY #1

(x+ y) + z

?
= x+ (y + z)

• Example 2:

• Ints?

• Yes!

• Floats?

• (1e20 + -1e20) + 3.14 --> 3.14

• 1e20 + (-1e20 + 3.14) --> No (why?)

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

REALITY #1

(x+ y) + z

?
= x+ (y + z)

• Example 2:

• Ints?

• Yes!

• Floats?

• (1e20 + -1e20) + 3.14 --> 3.14

• 1e20 + (-1e20 + 3.14) --> No (why?)

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

REALITY #1

(x+ y) + z

?
= x+ (y + z)

• Example 2:

• Ints?

• Yes!

• Floats?

• (1e20 + -1e20) + 3.14 --> 3.14

• 1e20 + (-1e20 + 3.14) --> No (why?)

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

REALITY #1

(x+ y) + z

?
= x+ (y + z)

• Example 2:

• Ints?

• Yes!

• Floats?

• (1e20 + -1e20) + 3.14 --> 3.14

• 1e20 + (-1e20 + 3.14) --> No (why?)

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

REALITY #1

(x+ y) + z

?
= x+ (y + z)

• Example 2:

• Ints?

• Yes!

• Floats?

• (1e20 + -1e20) + 3.14 --> 3.14

• 1e20 + (-1e20 + 3.14) --> No (why?)

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

REALITY #1

(x+ y) + z

?
= x+ (y + z)

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

REALITY #1

Source:	xkcd.com/571	

• We need to understand what is happening here

WE CANNOT ASSUME TYPICAL MATH
PROPERTIES

REALITY #1

• Because of finiteness of representations

• Integer operations satisfy “ring” properties

• Commutativity, associativity, distributivity

• Floating point operations satisfy “ordering” properties

• Monotonicity, values of signs

• Observation

• Need to understand which abstractions apply in
which contexts

• Important issues for compiler writers and serious
application programmer

YOU NEED TO KNOW ABOUT ASSEMBLY

REALITY #2

• Chances are, you’ll never write programs in assembly

• Compilers are much better & more patient than you are

• But: Understanding assembly is key to machine-level
execution model

• Behavior of programs in presence of bugs

• High-level language models break down

• Tuning program performance

• Understand optimizations done / not done by the
compiler

• Understanding sources of program inefficiency

YOU NEED TO KNOW ABOUT ASSEMBLY

REALITY #2

• But: Understanding assembly is key to machine-level
execution model

• Implementing system software

• Compiler has machine code as target

• Operating systems must manage process state

• Creating / fighting malware

• x86 assembly is our language of choice

• arm is a close good second

MEMORY MATTERS

REALITY #3

• Random Access Memory Is an Unphysical Abstraction

• Memory is not unbounded

• It must be allocated and managed

• Many applications are memory dominated

• Memory referencing bugs especially pernicious

• Effects are distant in both time and space

• Memory performance is not uniform

• Cache and virtual memory effects can greatly affect
program performance

• Adapting program to characteristics of memory system
can lead to major speed improvements

MEMORY REFERENCING BUG EXAMPLE

REALITY #3

MEMORY REFERENCING BUG EXAMPLE

REALITY #3

MEMORY REFERENCING BUG EXPLANATION

REALITY #3

a[0]

a[1]

d{
?

?

Protected Memory

0

1

2

3

4

5

6

Locations
accessed by

fun(i)}

MEMORY MATTERS

REALITY #3

• C and C++ do not provide any memory protection

• Out of bounds array references

• Invalid pointer values

• Abuses of malloc/free

• Can lead to nasty bugs

• Whether or not bug has any effect depends on system
and compiler

• Action at a distance

• Corrupted object logically unrelated to one being
accessed

• Effect of bug may be first observed long after it is
generated

MEMORY MATTERS

REALITY #3

• How can I deal with this?

• Program in Java, Ruby, Python, Erlang, …

• Understand what possible interactions may occur

• Use or develop tools to detect referencing errors (e.g.
Valgrind)

