ABSTRACTION ISN'T THE

ENTIRE STORY
CS 045

Computer Organization and
Architecture

Prof. Donald J. Patterson

OVERVIEW

® Course Theme

® Five Realities
® General System Walkthrough

OVERVIEW

L. Course Theme |

__

® Five Realities
® General System Walkthrough

. : P 'V

ABSTRACTION IS GOOD BUT DON'T
FORGET REALITY

® Most Computer Science courses emphasize abstraction

® Abstract data types
® Asymptotic analysis
® These abstractions have limits
® Especially in the presence of bugs

® We need to understand details of underlying
implementations

® Useful outcomes from taking 45
® Become more effective programmers
® Able to find and eliminate bugs efficiently

® Able to understand and tune for program
performance

OVERVIEW

® Course Theme

® Five Realities
® General System Walkthrough

OVERVIEW

® Course Theme

¢ General yst Walkthrough

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

® Example 1:Is 1° >0

#include <stdio.h>

int main(){

float y = 40000.0;
printf("float\n");
printf("%f squared
y = 50000.0;

printf("%f squared

int x = 40000;
printf("int\n");
printf("%d squared
x = 50000;
printf("%d squared

is

is

is

is

$f\n

$f\n"

$d\n"

$d\n"

e Y YY)

'Y Y*Y):

X, X*X);

X, X*X);

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

® Example 1:Is 1° >0

#include <stdio.h>

int main(){

float

40000.000000 squared is 1600000000.000000
50000.000000 squared is 2500000000.000000

y = 50000.0; I

printf("%f squared is %$f\n",y,y*y):

int x = 40000;

printf("int\n");

printf("%d squared is %d\n",x,x*x);
x = 50000;

printf("%d squared is %d\n",x,x*x);

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

® Example 1:Is 1° >0

#include <stdio.h>

int main(){

float
40000.000000 squared 1is 1600000000.000000|
50000.000000 squared is 2500000000.000000

y = 50000.0; r
int
40000 squared is 1600000000

50000 ssuared is =-1794967296

x = 50000;
printf("%d squared is %d\n",x,x*x);

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

® Example 1:Is 1° >0 ?

® FKloats?

float
40000.000000 squared is 1600000000.000000
50000.000000 squared is 2500000000.000000

® Ints?

int

40000 squared is 1600000000
50000 ssuared is =-1794967296

D A

A P

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

® Example 1:Is 1° >0 ?

® FKloats?
® Yes!

® Ints?

int

40000 squared is 1600000000
50000 ssuared is =-1794967296

D A

A P

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

® Example 1:Is 1° >0 ?

® FKloats?
® Yes!

® Ints?
® 40,000 * 40,000 -> 1,600,000,000
® 50,000 * 50,000 -> No (why?)

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

o Examp162z($+y)+z;x—|—(y—|—2)

#include <stdio.h>

int main(){
int x = =10;
int y = 10;
int 2z = 30;
printf("int\n");
printf("(%d + %d) + %d
printf("%d + (%d + %d)

float £x = 1e20;
float fy = -1e20;
float £z = 3.1415;

printf("float\n");
printf("(%e + %e) + %f£
printf(“"%e + (%e + %f)

$d\n
$d\n

$f\n
$f\n

"X YirZ,(XtYy)t2);
“IXIYIZIX+(Y+Z));

"oEx,fy,f2z, (fx+fy)+£f2z2);
"y Ex,fy,fz2,f£x+(£fy+£fz));

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

o Examp162z($+y)+z;x—|—(y—|—2)

#include <stdio.h>

int main{(\){
int

float £x = 1e20;
float fy = -1e20;
float £z = 3.1415;

printf("float\n");
printf("(%e + %e) + %f£
printf(“"%e + (%e + %f)

X Y2, (XtYy)t2);
"IXIYIZIX+(Y+Z));

“yEx,fy,.fz, (£x+£fy)+f2);
"y Ex,fy,fz2,f£x+(£fy+£fz));

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

o Examp162z($+y)+z;x—|—(y—|—2)

#include <stdio.h>

int main{(\){
int

(=10 + 10) + 30 = 30
-10 + (10 + 30) = 30
pr+nggzn!!a I ?g’ IA!H = !§§ntlxIYIzl(fo)+??; \
float
(1.000000e+20 + -1.000000e+20) + 3.141500 = 3.141500
1.000000e+20 + (-1.000000e+20 + 3.141500) = 0.000000

printf("float\n");
printf("(%e + %e) + %f£
printf(“"%e + (%e + %f)

$f\n" ,£fx,fy,fz, (fx+fy)+£2);
$f\n",fx,fy,fz,fx+(£fy+£fz));

D A

A P

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

° Examp162z($+y)+z;x—|—(y—|—2)

® Ints?

int

(=10 + 10) + 30
-10 + (10 + 30)
.W

float
(1.000000e+20 + -1.000000e+20) + 3.141500 3.141500

1.000000e+20 + (-1.000000e+20 + 3.141500) 0.000000
S ——

D
_

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

° Examp162z($+y)+z;x—|—(y—|—2)

® Ints?
® Yes!

® Floats?

float
(1.000000e+20 + -1.000000e+20) + 3.141500 = 3.141500
1.000000e+20 + (-1.000000e+20 + 3.141500) = 0.000000

D
_

INTS ARE NOT INTEGERS
FLOATS ARE NOT REALS

° Examp162z($+y)+z;x—|—(y—|—2)

® Ints?
® Yes!

® FKloats?
® (1e20 + -1e20) + 3.14 --> 3.14
® 1e20 + (-1e20 + 3.14) --> No (why?)

_

INTS ARE NOT INTEGERS

FLOATS ARE NOT REALS

oo 2...

BAAA

... 1,306... 1,307...

BAAA

5D
B e

AN_A_NA_—

-

... 32,767...-32,768...
BaAA BAAAA B
PAAA 9’ 3
EEER
m
<

R=:l

‘e .—32)767000 "32)766 .o

2

I\

—
J

® We need to understand what is happening here

Source: xkcd.com/571

WE CANNOT ASSUME TYPICAL MATH
PROPERTIES

® Because of finiteness of representations

® Integer operations satisfy “ring” properties
¢® Commutativity, associativity, distributivity

® Floating point operations satisfy “ordering” properties
® Monotonicity, values of signs

® Observation

® Need to understand which abstractions apply in
which contexts

® Important issues for compiler writers and serious
application programmer

YOU NEED TO KNOW ABOUT ASSEMBLY

® Chances are, you’ll never write programs in assembly
® Compilers are much better & more patient than you are

® But: Understanding assembly is key to machine-level
execution model

® Behavior of programs in presence of bugs
® High-level language models break down
® Tuning program performance

® Understand optimizations done / not done by the
compiler

® Understanding sources of program inefficiency

YOU NEED TO KNOW ABOUT ASSEMBLY

® But: Understanding assembly is key to machine-level
execution model

® Implementing system software

® Compiler has machine code as target

® Operating systems must manage process state
® Creating / fighting malware

® x86 assembly is our language of choice

® arm is a close good second

MEMORY MATTERS

® Random Access Memory Is an Unphysical Abstraction

® Memory is not unbounded
® [t must be allocated and managed
® Many applications are memory dominated

® Memory referencing bugs especially pernicious
® Effects are distant in both time and space

® Memory performance is not uniform

® Cache and virtual memory effects can greatly affect
program performance

® Adapting program to characteristics of memory system
can lead to major speed improvements

MEMORY REFERENCING BUG EXAMPLE

#include <stdio.h>

typedef struct {
int a[2];
double d:;

} struct t;

double fun(int i) {
S.d — 3014;

return s.d;

int main(){
printf("fun(%d)
printf("fun(%d)
printf("fun(%d)
printf("fun(%d)
printf("fun(%d)
printf("fun(%d)
printf("fun(%d)

volatile struct_t s;

s.a[i] = 1073741824;

/* Possibly out of bounds */

$1f\n",0,£fun(0))
$1f\n",1,fun(l))
$1f\n",2,fun(2))
$1f\n",3,fun(3));
$1f\n",4,fun(4))
$1f\n",5,fun(5))
$1f\n",6,fun(6))

MEMORY REFERENCING BUG EXAMPLE

#include <stdio.h>

typedef struct {
int a[2];
double d;

} struct t;

double fun(int i) {

volatile struct_t s;

s.d = 3.14;

s.a[i] = 1073741824;

return s.d;

}

int main(){
printf("fun(%d)
printf("fun(%d)
printf("fun(%d)
printf("fun(%d)
printf("fun(%d)
printf("fun(%d)
printf("fun(%d)

/* Possibly out of bounds */

$1f\n",0,fun(0));
$1f\n",1,fun(l));
$1f\n",2,fun(2));
$1f\n",3,fun(3)):;
$1f\n",4,fun(4));
$1f\n",5,fun(5));
$1f\n",6,fun(6));

fun(0)
fun(1l)
fun(2)
fun(3)
fun(4)
fun(5)

3.140000
3.140000
3.140000
2.000001
3.140000
3.140000

Segmentation fault

MEMORY REFERENCING BUG EXPLANATION

#include <stdio.h>

typedef struct {
int a[2];
double d;

} struct_t;

double fun(int 1) {

volatile struct_t s;

s.d = 3.14;

s.a[i] = 1073741824;

return s.d;

int main(){
printf("fun(%d)
printf("“fun(%d)
printf("“fun(%d)
printf(“"fun(%d)
printf("fun(%d)
printf("fun(%d)
printf(“fun(%d)

/* Possibly out of bounds */

$1f\n",0,fun(0));
$1f\n",1,fun(1));
$1f\n",2,fun(2));
$1f\n",3,fun(3));
$1f\n",4,fun(4));
$1f\n",5,fun(5));
$1f\n",6,fun(6));

al[1]

al@]

Protected Memory

Locations
accessed by
fun(i)

MEMORY MATTERS

® C and C++ do not provide any memory protection

® Out of bounds array references
® Invalid pointer values
® Abuses of malloc/iree

® Can lead to nasty bugs

® Whether or not bug has any effect depends on system
and compiler

® Action at a distance

® Corrupted object logically unrelated to one being
accessed

® Effect of bug may be first observed long after it is
generated

MEMORY MATTERS

® How can I deal with this?
® Program in Java, Ruby, Python, Erlang, ...
® Understand what possible interactions may occur

® Use or develop tools to detect referencing errors (e.g.
Valgrind)

AL
AT
ainins

WESTMONT

JIMF

