
BITS, BYTES, AND INTEGERS  

CS 045

Computer Organization and
Architecture

Prof. Donald J. Patterson
Adapted from Bryant and O’Hallaron,
Computer Systems:
A Programmer’s Perspective, Third Edition

WORK IT OUT
• Create a program that will print out numbers from 1 to

100 backwards

• Create a program that

• will create an array of integers with 100 elements in
it

• set each of the elements to twice its index value.

• output the address of each element of the array

• Create a function that doubles the value of its
argument. Use pointers to make the changes persist
even after the function call is complete.

TYPES IN C : POINTERS

WORK IT OUT
• Create a program that will print out numbers from 1 to

100 backwards

TYPES IN C : POINTERS

WORK IT OUT
• Create a program that will print out numbers from 1 to

100 backwards

TYPES IN C : POINTERS

WORK IT OUT
• Create a program that

• will create an array of integers with 100 elements in
it

• set each of the elements to twice its index value.

• output the address of each element of the array

TYPES IN C : POINTERS

WORK IT OUT
• Create a program that

• will create an array of integers with 100 elements in
it

• set each of the elements to twice its index value.

• output the address of each element of the array

TYPES IN C : POINTERS

WORK IT OUT • Create a function that doubles the
value of its argument. Use pointers
to make the changes persist even
after the function call is complete.

TYPES IN C : POINTERS

WORK IT OUT • Create a function that doubles the
value of its argument. Use pointers
to make the changes persist even
after the function call is complete.

TYPES IN C : POINTERS

0 1

BASICS
• bit

• byte

• bytes that are interpreted becomes information

• instructions

• machine language

• data “types”

• unsigned integers

• signed integers (two’s-complement)

• floating point

• characters

BITS, BYTES, INTEGERS

BASICS
• Why bits?

• Easy to store with bistable elements

• Reliably transmitted on noisy and inaccurate wires

BITS, BYTES, INTEGERS

0.0V
0.2V

0.9V
1.1V

0 1 0

BASICS
• bytes are limited so computations can have errors

• overflow

BITS, BYTES, INTEGERS

BASICS
• bytes are limited so computations can have errors

• overflow

BITS, BYTES, INTEGERS

BASICS
• bytes are limited so computations can have errors

• underflow

BITS, BYTES, INTEGERS

BINARY
• Despite limitations we can count in binary just like we

can in decimal

• We can represent

• 1521310 as 111011011011012

• 1.2010 as 1.0011001100110011[0011]…2

• 1.5213 X 104 as 1.11011011011012 X 213

BITS, BYTES, INTEGERS

BINARY
• Byte = 8 bits

• Binary 000000002 to 111111112

• Decimal: 010 to 25510

• Hexadecimal 0016 to FF16

• Base 16 number representation

• Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

• Write FA1D37B16 in C as

• 0xFA1D37B

• 0xfa1d37b

BITS, BYTES, INTEGERS

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

He
x
De
cim
al

Bin
ary

CONVERSIONS
• What is 0x39A7F8 in binary

• What is 1100100101111011 in hexadecimal

• What is 0xD5E4C in binary

• What is 1001101110011110110101

WORK IT OUT

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

He
x
De
cim
al

Bin
ary

CONVERSIONS
• What are the following in hexadecimal

• 0000 00002

• 0001 00002

• 0001 00002

• 0101 01012

• 1001 10012

• 0001 00012

• 0010 00102

• 0100 01002

• 1000 10002

WORK IT OUT

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

He
x
De
cim
al

Bin
ary

TYPICAL SIZES VARY ON DIFFERENT MACHINES

BITS, BYTES, INTEGERS

C	Data	Type	 Typical	32-bit	 Typical	64-bit	 x86-64	

char 1	 1	 1	

short 2	 2	 2	

int 4	 4	 4	

long 4	 8	 8	

float 4	 4	 4	

double 8	 8	 8	

long double −	 −	 10/16	

pointer	 4	 8	 8	

• Data representations in bytes

{BIG, LITTLE} ENDIAN

BITS, BYTES, INTEGERS

• Data representations in bytes

• Suppose

• int *p = 0x100;
• (*p) = 0x01234567;

{BIG, LITTLE} ENDIAN

BITS, BYTES, INTEGERS

• So which format does your computer use?

• Write a program which will show you the
answer

{BIG, LITTLE} ENDIAN

BITS, BYTES, INTEGERS

• So which format does your computer use?

• Write a program which will show you the
answer

{BIG, LITTLE} ENDIAN

BITS, BYTES, INTEGERS

• So which format does your computer use?

• Write a program which will show you the
answer

{BIG, LITTLE} ENDIAN

BITS, BYTES, INTEGERS

WHAT ABOUT CHARACTERS?

BITS, BYTES, INTEGERS

WHAT ABOUT CHARACTERS?

BITS, BYTES, INTEGERS

