
MACHINE LEVEL
PROGRAMMING 1: BASICS
CS 045

Computer Organization and
Architecture

Prof. Donald J. Patterson
Adapted from Bryant and O’Hallaron,
Computer Systems:
A Programmer’s Perspective, Third Edition

• HISTORY OF INTEL PROCESSORS AND
ARCHITECTURES

• C, ASSEMBLY, MACHINE CODE

• ASSEMBLY BASICS: REGISTERS,
OPERANDS, MOVE

• ARITHMETIC & LOGICAL OPERATIONS

• HISTORY OF INTEL PROCESSORS AND
ARCHITECTURES

• C, ASSEMBLY, MACHINE CODE

• ASSEMBLY BASICS: REGISTERS,
OPERANDS, MOVE

• ARITHMETIC & LOGICAL OPERATIONS

• Dominate laptop/desktop/server market

• Evolutionary design

• Backwards compatible up until 8086, introduced in 1978

• Added more features as time goes on

• Documentation

• https://software.intel.com/sites/default/files/managed/39/
c5/325462-sdm-vol-1-2abcd-3abcd.pdf

HISTORY

INTEL X86 PROCESSORS

https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

ELECTRONICS NEWS, 11/15/71

• 1978: By 1978, microprocessor chip complexity had increased
an order of magnitude over the first four-bit processors. Intel’s
8086 16-bit processor, shown here, integrates 29,000
transistors, over 12 times as many as the original Intel 4004.
[citation]

https://doi.org/10.1109/MM.1981.290812

• Complex instruction set computer (CISC)

• Many different instructions with many different formats

• But, only small subset encountered with Linux programs

• Hard to match performance of Reduced Instruction Set
Computers (RISC) (e.g. ARM)

• But, Intel has done just that!

• In terms of speed. Less so for low power.

HISTORY

INTEL X86 PROCESSORS

• Name Date Transistors MHz

• 8086 1978 29K 5-10

• First 16-bit Intel processor. Basis for IBM PC & DOS

• 1MB address space

• 386 1985 275K 16-33

• First 32 bit Intel processor , referred to as IA32

• Added “flat addressing”, capable of running Unix

• Pentium 4E 2004 125M 2800-3800

• First 64-bit Intel x86 processor, referred to as x86-64

• Core 2 2006 291M 1060-3500

• First multi-core Intel processor

• Core i7 2008 731M 1700-3900

• i7-7700 2017 ? 4500

HISTORY
INTEL X86 EVOLUTION: MILESTONES

• Machine Evolution

• 386 1985 0.3M

• Pentium 1993 3.1M

• Pentium/MMX 1997 4.5M

• PentiumPro 1995 6.5M

• Pentium III 1999 8.2M

• Pentium 4 2001 42M

• Core 2 Duo 2006 291M

• Core i7 2008 731M

• Added Features

• Instructions to support multimedia operations

• Instructions to enable more efficient conditional operations

HISTORY

INTEL X86 EVOLUTION

HISTORY

INTEL X86 EVOLUTION

• Core i7 Kaby Lake 2017

• Desktop Model

• 4 cores

• Integrated 4k Video

• 2.9-4.5 GHz

• 65W

HISTORY

2017 STATE OF THE ART

• Historically

• AMD has followed just behind Intel

• A little bit slower, a lot cheaper

• Then

• Recruited top circuit designers from Digital Equipment Corp.
and other downward trending companies

• Built Opteron: tough competitor to Pentium 4

• Developed x86-64, their own extension to 64 bits

• Recent Years

• Intel got its act together

• Leads the world in semiconductor technology

• AMD has fallen behind

• Relies on external semiconductor manufacturer

HISTORY

X86 CLONES: ADVANCED MICRO DEVICES (AMD)

• 2001: Intel Attempts Radical Shift from IA32 to IA64

• Totally different architecture (Itanium)

• Executes IA32 code only as legacy

• Performance disappointing

• 2003: AMD Steps in with Evolutionary Solution

• x86-64 (now called “AMD64”)

• Intel Felt Obligated to Focus on IA64

• Hard to admit mistake or that AMD is better

• 2004: Intel Announces EM64T extension to IA32

• Extended Memory 64-bit Technology

• Almost identical to x86-64!

• All but low-end x86 processors support x86-64

• But, lots of code still runs in 32-bit mode

HISTORY

INTEL 64 BIT HISTORY

• HISTORY OF INTEL PROCESSORS AND
ARCHITECTURES

• C, ASSEMBLY, MACHINE CODE

• ASSEMBLY BASICS: REGISTERS,
OPERANDS, MOVE

• ARITHMETIC & LOGICAL OPERATIONS

• HISTORY OF INTEL PROCESSORS AND
ARCHITECTURES

• C, ASSEMBLY, MACHINE CODE

• ASSEMBLY BASICS: REGISTERS,
OPERANDS, MOVE

• ARITHMETIC & LOGICAL OPERATIONS

• Architecture: (also ISA: instruction set architecture) The parts
of a processor design that one needs to understand to write
assembly/machine code.

• Examples: instruction set specification, registers.

• Microarchitecture: Implementation of the architecture.

• Examples: cache sizes and core frequency.

• Code Forms:

• Machine Code: The byte-level programs that a processor
executes

• Assembly Code: A text representation of machine code

• Example ISAs:

• Intel: x86, IA32, Itanium, x86-64

• ARM: Used in almost all mobile phones

C, ASSEMBLY, MACHINE CODE

DEFINITIONS

• Architecture: (also ISA: instruction set architecture) The parts
of a processor design that one needs to understand or write
assembly/machine code.

• Examples: instruction set specification, registers.

• Microarchitecture: Implementation of the architecture.

• Examples: cache sizes and core frequency.

• Code Forms:

• Machine Code: The byte-level programs that a processor
executes

• Assembly Code: A text representation of machine code

• Example ISAs:

• Intel: x86, IA32, Itanium, x86-64

• ARM: Used in almost all mobile phones

C, ASSEMBLY, MACHINE CODE

DEFINITIONS

• Programmer-Visible State

• PC: Program counter

• Address of next instruction

• Called “RIP” (x86-64)

• Register file

• Heavily used program data

• Condition codes

• Store status information about most recent arithmetic or logical
operation

• Used for conditional branching

C, ASSEMBLY, MACHINE CODE

ASSEMBLY/MACHINE CODE VIEW
CPU	

PC	

Registers	

Memory	

Code	
Data	
Stack	

Addresses	

Data	

Instruc.ons	Condi7on	
Codes	

• Memory

• Byte addressable array

• Code and user data

• Stack to support procedures

C, ASSEMBLY, MACHINE CODE

ASSEMBLY/MACHINE CODE VIEW
CPU	

PC	

Registers	

Memory	

Code	
Data	
Stack	

Addresses	

Data	

Instruc.ons	Condi7on	
Codes	

• Code in files p1.c p2.c

• Compile with command: gcc –O0 p1.c p2.c -o p

• -O0 use default optimizations

• -Og [New to recent versions of GCC] “basic optimizations”

• Put resulting binary in file p

C, ASSEMBLY, MACHINE CODE

TURNING C INTO OBJECT CODE

text	

text	

binary	

binary	

Compiler	(gcc –O0 -S)	

Assembler	(gcc	or	as)	gcc	–c	p1.s	p2.s	

Linker	(gcc	or ld)	gcc	p1.o	p2.o	–o	p	

C	program	(p1.c p2.c)	

Asm	program	(p1.s p2.s)	

Object	program	(p1.o p2.o)	

Executable	program	(p)	
Sta?c	libraries	

(.a)	

• On wcpkneel

• Compile with command: gcc -O1 -S sum.c

• this produces sum.s

• Note: Will get very different results on different machine (Linux, Mac OS-X,
…) due to different versions of gcc and different compiler settings.

C, ASSEMBLY, MACHINE CODE

COMPILING INTO ASSEMBLY
sum.c sum.s

• “Integer” data of 1, 2, 4, or 8 bytes

• Data values

• Addresses (untyped pointers)

• Floating point data of 4, 8, or 10 bytes

• Code

• Byte sequences encoding series of instructions

• No aggregate types such as arrays or structures

• Just contiguously allocated bytes in memory

C, ASSEMBLY, MACHINE CODE

ASSEMBLY CHARACTERISTICS: DATA TYPES

• Perform arithmetic function on register or memory data

• Transfer data between memory and register

• Load data from memory into register

• Store register data into memory

• Transfer control

• Unconditional jumps to/from procedures

• Conditional branches

C, ASSEMBLY, MACHINE CODE

ASSEMBLY CHARACTERISTICS: OPERATIONS

C, ASSEMBLY, MACHINE CODE

OBJECT CODE

sumstore as machine language

C, ASSEMBLY, MACHINE CODE

OBJECT CODE
Code	for	sumstore	
	0x0400595:
 0x53
 0x48
 0x89
 0xd3
 0xe8
 0xf2
 0xff
 0xff
 0xff
 0x48
 0x89
 0x03
 0x5b
 0xc3

•  Total	of	14	bytes	
•  Each	instruc7on	
1,	3,	or	5	bytes	

•  Starts	at	address	
0x0400595

• Assembler

• Translates .s into .o

• Binary encoding of each instruction

• Nearly-complete image of executable code

• Missing linkages between code in different
files

• Linker

• Resolves references between files

• Combines with static run-time libraries

• E.g., code for malloc, printf

• Some libraries are dynamically linked

• Linking occurs when program begins
execution

C, ASSEMBLY, MACHINE CODE

MACHINE INSTRUCTION EXAMPLETRANSLATES .S
• C Code

• Store value t where designated by dest

• Assembly

• Move 8-byte value to memory

• Quad words in x86-64 parlance

• Operands:

• t: Register %rax

• dest: Register %rbx

• *dest: Memory M[%rbx]

• Object Code

• 3-byte instruction

• 0x48 89 03

*dest = t;

movq %rax, (%rbx)

C, ASSEMBLY, MACHINE CODE

MACHINE INSTRUCTION EXAMPLETRANSLATES .S
• C Code

• Store value t where designated by dest

• Assembly

• Move 8-byte value to memory

• Quad words in x86-64 parlance

• Operands:

• t: Register %rax

• dest: Register %rbx

• *dest: Memory M[%rbx]

• Object Code

• 3-byte instruction

• 0x48 89 03

*dest = t;

movq %rax, (%rbx)

C, ASSEMBLY, MACHINE CODE

DISASSEMBLING OBJECT CODE

• Disassembler

• objdump –d sum
• Useful tool for examining object code

• Analyzes bit pattern of series of instructions

• Produces approximate rendition of assembly code

• Can be run on either a.out (complete executable) or .o file

C, ASSEMBLY, MACHINE CODE

ALTERNATE DISASSEMBLY

• Within gdb Debugger

• gdb sum
• disassemble sumstore
• Disassemble procedure

• x/14xb sumstore
• Examine the 14 bytes starting at sumstore

C, ASSEMBLY, MACHINE CODE

WHAT CAN BE DISASSEMBLED?

• Anything that can be interpreted as executable code

• Disassembler examines bytes and reconstructs assembly source

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:
30001000: 55 push %ebp
30001001: 8b ec mov %esp,%ebp
30001003: 6a ff push $0xffffffff
30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc91

Reverse	engineering	forbidden	by	
Microso1	End	User	License	Agreement	

