MACHINE LEVEL

PROGRAMMING 1: BASICS
CS 045

Computer Organization and
Architecture

Prof. Donald J. Patterson

HISTORY OF INTEL PROCESSORS AND
ARCHITECTURES

C, ASSEMBLY, MACHINE CODE

ASSEMBLY BASICS: REGISTERS,
OPERANDS, MOVE

ARITHMETIC & LOGICAL OPERATIONS

® HISTORY OF INTEL PROCESSORS AND
ARCHITECTURES
® C, ASSEMBLY, MACHINE CODE

® ASSEMBLY BASICS: REGISTERS,
OPERANDS, MOVE

® ARITHMETIC & LOGICAL OPERATIONS

on
A

INTEL X86 PROCESSORS

® Dominate laptop/desktop/server market

® Evolutionary design
® Backwards compatible up until 8086, introduced in 1978

® Added more features as time goes on

® Documentation

® https://software.intel.com/sites/default/files/managed/39/
c5/325462-sdm-vol-1-2abcd-3abcd.pdf

https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

A micro-

programmable
computer
on a chip!

Intel introduces an integrated CPU complete with a 4-bit
parallel adder, sixteen 4-bit registers, an accumulator
and a push-down stack on one chip. It's one of a family
of four new ICs which comprise the MCS-4 micro
computer system—the first system to bring you the
power and flexibility of a dedicated general-purpose
computer at low cost in as few as two dual in-line
packages.

MCS-4 systemé provide complete computing and
control functions for test systems, data terminals, billing
machines, measuring systems, numeric control systems
and process control systems.

The heart of any MCS-4 system is a Type 4004 CPU,
which includes a powerful set of 45 instructions. Adding
one or more Type 4001 ROMSs for program storage

and data tables gives you a fully functioning micro-
programmed computer. To this you may add Type 4002
RAMs for read-write memory and Type 4003 registers
to expand the output ports.

Using no circuitry other than ICs from this family of
four, you can create a system with 4096 8-bit bytes of
ROM storage and 5120 bits of RAM storage. When

you require rapid turn-around or need only a few
systems, Intel’s erasable and re-programmable ROM,
Type 1701, may be substituted for the Type 4001 mask-
programmed ROM.

MCS-4 systems interface easily with switches, key-
boards, displays, teletypewriters, printers, readers, A-D
converters and other popular peripherals.

The MCS-4 family is now in stock at Intel’s Santa Clara
headquarters and at our marketing headquarters in
Europe and Japan. In the U.S,, contact your local Intel
representative for technical information and literature.
In Europe, contact Intel at Avenue Louise 216, B 1050
Bruxelles, Belgium. Phone 492003. In Japan, contact
Intel Japan, Inc., Parkside Flat Bldg. No. 4-2-2,
Sendagaya, Shibuya-Ku, Tokyo 151. Phone 03-403-4747.

Intel Corporation now produces micro computers,
memory devices and memory systems at 3065 Bowers
Avenue, Santa Clara, Calif. 95051. Phone (408) 246-7501.

intgl

elivers.

Announeing
anew era

of integrated
electronics

ELECTRONICS NEWS, 11/15/71

™ TS e

. B |

e L R

® 1978: By 1978, microprocessor chip complexity had increased
an order of magnitude over the first four-bit processors. Intel’s
8086 16-bit processor, shown here, integrates 29,000

transistors, over 12 times as many as the original Intel 4004.
[citation]

https://doi.org/10.1109/MM.1981.290812

on
A

INTEL X86 PROCESSORS

® Complex instruction set computer (CISC)
® Many different instructions with many different formats
® But, only small subset encountered with Linux programs

® Hard to match performance of Reduced Instruction Set
Computers (RISC) (e.g. ARM)

® But, Intel has done just that!
® In terms of speed. Less so for low power.

_

INTEL X86 EVOLUTION: MILESTONES

® Name Date Transistors MHz
® 8086 1978 29K 5-10
® First 16-bit Intel processor. Basis for IBM PC & DOS
® 1MB address space
® 386 1985 275K 16-33
® First 32 bit Intel processor , referred to as [IA32
® Added “flat addressing”, capable of running Unix

® Pentium 4E2004 125M 2800-3800

® First 64-bit Intel x86 processor, referred to as x86-64
® Core 2 2006 291M 1060-3500

® First multi-core Intel processor
® Core i7 2008 731M 1700-3900

® 17-7700 2017 ? 4500

_
N A

INTEL X86 EVOLUTION

® Machine Evolution

® 386 1985 0.3M
® Pentium 1993 3.1M
® Pentium/MMX 1997 4.5M
® PentiumPro 1995 6.OM
® Pentium III 1999 3.2M
® Pentium 4 2001 42M

® Core 2 Duo 2006 291M
® Core17/ 2008 731M

® Added Features
® [nstructions to support multimedia operations

® [nstructions to enable more efficient conditional oeperations

on
N [\

INTEL X86 EVOLUTION
Integrated:Memory Controller~:3:Ch DDR3:

Core O Cdre 1 Core2 Core3

Shared L3 Cache

2017 STATE OF THE AR

@)

Core i7 Kaby Lake 2017

Desktop Model

® 4 cores

® [ntegrated 4k Video
® 2.9-4.5 GHz

® 65W

5 A
Rt

System Agent w/Display, Memory Control,

.......

CPU Core

1/O Control

i CPU Core

aq::eyﬂjupﬁamqs

CPU Core

L [asrete
G o Rt

I d !
ey GRS = 5 At) " WA
: gae Y S E A

Graphlcs Core +

2 New Media Capabilities

CPU Core

. -t - -
% e
oo o A e o
* Q* ‘.‘;“.“ !
% i = i i
e B . IR e
gi e,

>, -
r
Syt Hgtn
o, ol ebe - 3 o, <ol
.a ‘_ a - % g a- . i -—
i - M= e Sl

.A; &gglglq

"l:uvlua’u

-
)
.t.‘"g_ C gt i ety |
G i h N 7113 h= 1P
B — R R T
et
e
oo TEa e
B e 2 i T }
P B vty
=x fres

&
e o
i A e

aseau] O/] pue Aloway

_
B A

X86 CLONES: ADVANCED MICRO DEVICES (AMD)

® Historically
® AMD has followed just behind Intel
® A little bit slower, a lot cheaper

® Then

® Recruited top circuit designers from Digital Equipment Corp.
and other downward trending companies

® Built Opteron: tough competitor to Pentium 4
® Developed x86-64, their own extension to 64 bits
® Recent Years
® Intel got its act together
® Leads the world in semiconductor technology
® AMD has fallen behind
® Relies on external semiconductor manufacturer

_
B A

INTEL 64 BIT HISTORY

® 2001: Intel Attempts Radical Shift from IA32 to IA64
® Totally different architecture (Itanium)
® Executes [IA32 code only as legacy
® Performance disappointing

® 2003: AMD Steps in with Evolutionary Solution
® x86-64 (now called “AMDG64”)

® Intel Felt Obligated to Focus on [A64
® Hard to admit mistake or that AMD is better

® 2004: Intel Announces EM64T extension to IA32
® Extended Memory 64-bit Technology
® Almost identical to x86-64!

® All but low-end x86 processors support x86-64
® But, lots of code still runs in 32-bit mode

HISTORY OF INTEL PROCESSORS AND
ARCHITECTURES

C, ASSEMBLY, MACHINE CODE

ASSEMBLY BASICS: REGISTERS,
OPERANDS, MOVE

ARITHMETIC & LOGICAL OPERATIONS

® HISTORY OF INTEL PROCESSORS AND
ARCHITECTURES

® C, ASSEMBLY, MACHINE CODE

® ASSEMBLY BASICS: REGISTERS,
OPERANDS, MOVE

® ARITHMETIC & LOGICAL OPERATIONS

M E

DEFINITIONS

Architecture: (also [SA: instruction set architecture) The parts
of a processor design that one needs to understand to write
assembly/machine code.

® Examples: instruction set specification, registers.

® Microarchitecture: Implementation of the architecture.
® Examples: cache sizes and core frequency.

® Code Forms:

® Machine Code: The byte-level programs that a processor
executes

® Assembly Code: A text representation of machine code

¢® Example [SAs:
® Intel: x86, IA32, [tanium, xX86-64
® ARM: Used in almost all mobile phones

M E

DEFINITIONS

Architecture: (also [SA: instruction set architecture) The parts
of a processor design that one needs to understand or write
assembly/machine code.

® Examples: instruction set specification, registers.

® Microarchitecture: Implementation of the architecture.
® Examples: cache sizes and core frequency.

® Code Forms:

® Machine Code: The byte-level programs that a processor
executes

® Assembly Code: A text representation of machine code

¢® Example [SAs:
® Intel: x86, IA32, [tanium, xX86-64
® ARM: Used in almost all mobile phones

=1 | I\ &)

ASSEMBLY/MACHINE CODE VIEW

CPU Memor
Addresses . y
Registers
& Data Code
PC < > Data
Condition Instructions Stack
Codes <

® Programmer-Visible State
® PC: Program counter
® Address of next instruction
® Called “RIP” (x86-64)
® Register file
® Heavily used program data

® Condition codes

® Store status information about most recent arithmetic or logical
operation

® Used for conditional branching

"\

ASSEMBLY/MACHINE CODE VIEW

CPU

PC

Registers

Addresses

>

Condition
Codes

Data

Instructions

® Memory
® Byte addressable array
® Code and user data

® Stack to support procedures

Memory

Code
Data
Stack

TURNING C INTO OBJECT CODE

® Codein files pl.c p2.c
® Compile with command: gcc —-00 pl.c p2.c -0 p

® -00 use default optimizations

)

® -0g [New to recent versions of GCC] “basic optimizations’

® Put resulting binary in file p

text C program (pl.c p2.c)

j Compiler (gcc -00 -S)

text Asm program (pl.s p2.s)

Assembler (gcc or as) gcc —c pl.s p2.s

binary Object program (pl.o p2.0)

Linker (gcc or 1d) gcc pl.o p2.0-0p

. X Static libraries
binary Executable program (p) (.a)

W\ B VIAC HIN ()LL)

COMPILING INTO ASSEMBLY

sum.C sum.s
long plus(long x, long y); sumstore:
pushqg $rbx

void sumstore(long x, long y, long *dest) movqg $rdx, %$rbx
{ call plus

long t = plus(x, y); movq $rax, (%$rbx)

*dest = t; popq $rbx
}— ret

® On wcpkneel
® Compile with command: gcc -01 -S sum.c

® this produces sum.s

® Note: Will get very different results on different machine (Linux, Mac OS-X,
...) due to different versions of gcc and different compiler settings.

ASSEMBLY CHARACTERISTICS: DATA TYPES

WV B M AC 1IN) L)

“Integer” data of 1, 2, 4, or 8 bytes
® Data values

® Addresses (untyped pointers)

Floating point data of 4, 8, or 10 bytes

Code

® Byte sequences encoding series of instructions

No aggregate types such as arrays or structures

® Just contiguously allocated bytes in memory

WV B M AC 1IN) L)

ASSEMBLY CHARACTERISTICS: OPERATIONS

® Perform arithmetic function on register or memory data

® Transfer data between memory and register
® Load data from memory into register

® Store register data into memory

® Transfer control
® Unconditional jumps to/from procedures

® (Conditional branches

A 'V

OBJECT CODE

sumstore as machine language

5348 89d3 e800 0000 0048 8903 5bc3

0x53
0x48
0x89
0xd3
Oxe8
Ox£f2

Oxff
Oxff
Oxff
0x48
0x89
0x03
0x5b
Oxc3

OBJECT CODE

Code for sumstore

0x0400595:

e Total of 14 bytes

e Each instruction
1, 3, or 5 bytes

e Starts at address
0x0400595

5348 89d3 e800 0000 0048 8903 5bc3

"\

Assembler

® Translates .s into .o

® Binary encoding of each instruction

® Nearly-complete image of executable code

® Missing linkages between code in different
files

Linker

® Resolves references between files

® Combines with static run-time libraries
® E.g., code for malloc, printf

[

Some libraries are dynamically linked

Linking occurs when program begins
execution

M\ S Vi A

MACHINE INSTRUCTION EXAMPLETRANSLATES .S

*dest = t;

movqg %rax, (%rbx)

00 0000 0048 8903 5bc3

N\) L)

C Code

® Store value t where designated by dest
Assembly

® Move 8-byte value to memory

® Quad words in x86-64 parlance
Operands:

® t: Register Y%rax

® dest: Register %rbx

® *dest: MemoryM[%rbx]

Object Code

® 3-byte instruction

® 0x48 89 03

M\ S Vi A

MACHINE INSTRUCTION EXAMPLETRANSLATES .S

*dest = t;

movqg %rax, (%rbx)

00 0000 0148 8903 5bc3

N\) L)

C Code

® Store value t where designated by dest
Assembly

® Move 8-byte value to memory

® Quad words in x86-64 parlance
Operands:

® t: Register Y%rax

® dest: Register %rbx

® *dest: MemoryM[%rbx]

Object Code

® 3-byte instruction

® 0x48 89 03

M B MAC HIN) L)

DISASSEMBLING OBJECT CODE

0000000000000000 <sumstore>:

0: 53 push $rbx
l: 48 89 d3 mov $rdx, $rbx
4: e8 00 00 00 OO callg 9 <sumstore+0x9>
9: 48 89 03 mov $rax, (%$rbx)
c: 5b pop $rbx
d c3 retqg
® Disassembler
® objdump -d sum

® Useful tool for examining object code
® Analyzes bit pattern of series of instructions
® Produces approximate rendition of assembly code

® Can be run on either a.out (complete executable) or .o file

M B MAC HIN) L)

ALTERNATE DISASSEMBLY

(gdb) disassemble sumstore
Dump of assembler code for function sumstore:

0x0000000000000000 <+0>: push $rbx
0x0000000000000001 <+1>: mov $rdx, $rbx
0x0000000000000004 <+4>: callg 0x9 <sumstore+9>
0x0000000000000009 <+9>: mov $rax, ($rbx)

0x000000000000000c <+12>: pop $rbx
0x000000000000000d <+13>: retq

End of assembler dump.
- —

® Within gdb Debugger
® gdb sum

® disassemble sumstore
® Disassemble procedure
® x/14xb sumstore

¢® Examine the 14 bytes starting at sumstore

0x0 <sumstore>: 0x53 0x48 0x89 0xd3 Oxe8 0x00 0x00 0x00
'0x8 <sumstore+8>: 0x00 0x48 0x89 0x03 0x5b Oxc3

\ &)

WHAT CAN BE DISASSEMBLED?

% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000:

30001001 : _ _ .

30001003 Reverse engineering forbidden by
30001005: Microsoft End User License Agreement
3000100a:

Anything that can be interpreted as executable code

Disassembler examines bytes and reconstructs assembly source

AL
AT
ainins

WESTMONT

JIMF

