In Class work for Lecture 3/29/2017

Objective: Learn about program optimization: Observe the speed up by manual inlining, code motion, reduction in strength

- 1. Observer the effect of inlining by doing it manually
 - 1.1. Compile inline_base.c with no optimization
 - 1.2. Manually inline 7 instances of "calculate_index"
 - 1.2.1. Compile this version with no optimization
- 2. Now, further inline 1 instance of "set_row"
 - 2.1. Compile this version with no optimization
- 3. Now, further use "code_motion" to:
 - 3.1. move any instances of i*COLUMNS outside of the inner loops
- 4. Use reduction in strength to transform the multiplications to additions
- 5. Finally fully optimize your manually optimized code
 - 5.1. Compare it to fully optimizing the original

Condition	How long did it take to run the program?
gcc -o inline_base inline_base.c	
(calculate_index) gcc -o inline_manual_01 inline_manual_01.c	
(set_row) gcc -o inline_manual_02 inline_manual_02.c	
(code_motion) gcc -o inline_manual_03 inline_manual_03.c	
(reduction in strength) gcc -o inline_manual_04 inline_manual_04.c	
gcc -O3 -o inline_manual_04_max inline_manual_04.c	
gcc -O3 -o inline_base_max inline_base.c	

- 6. Were you able to improve performance by manually optimizing your code?
- 7. Were you able to beat the automatic optimizations?