CACHE MEMORY
CS 045

Adapted from Bryant and O’Hallaron,
Computer Systems:
A Programmer’s Perspective, Third Edition




MO ) K

A

Example Memory
Hierarchy "%/

CPU registers hold words
Smaller, retrieved from the L1 cache.
faster, L1:/ L1 cache
and (SRAM) L1 cache holds cache lines
costlier Lo L2 cache retrieved from the L2 cache.
(per byte) - (SRAM)
storage L2 cache holds cache lines
devices retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM) Main memory holds
cheaper disk blocks retrieved
(per byte) from local disks.
storage | 5. Local secondary storage
devices (local disks)
Local disks hold files
retrieved from disks
on remote servers
L6: Remote secondary storage

(e.g., Web servers)




EXAMPLES OF CACHING IN THE MEMORY

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By

Registers 4-8 bytes words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware
MMU

L1 cache 64-byte blocks On-Chip L1 4 | Hardware

L2 cache 64-byte blocks On-Chip L2 10 | Hardware

Virtual Memory 4-KB pages Main memory 100 | Hardware + OS

Buffer cache Parts of files Main memory 100 | OS

Disk cache Disk sectors Disk controller 100,000 | Disk firmware

Network buffer Parts of files Local disk 10,000,000 | NFS client

cache

Browser cache Web pages Local disk 10,000,000 | Web browser

Web cache Web pages Remote server disks 1,000,000,000 | Web proxy
server




CACHE MEMORY

® CACHE MEMORY ORGANIZATION AND
OPERATION

® PERFORMANCE IMPACT OF CACHES
®* THE MEMORY MOUNTAIN
® REARRANGING LOOPS TO IMPROVE
SPATIAL LOCALITY
® USING BLOCKING TO IMPROVE
TEMPORAL LOCALITY



Cache

Memory

Smaller, faster, more expensive
| 4 ” 9 ” 10 ” 3 | memory caches a subset of

the blocks

Data is copied in block-sized

| 10 | transfer units
Larger, slower, cheaper memory
| 0 ” 1 ” 2 ” 3 | viewed as partitioned into “blocks”
L a4 Il s J[ e || 7 |
L 8 Il 9 [ 20 [ 11 |
| 12 || 13 || 14 || 15 |
O 000000000000 OCOGEOGEOSOS




m Cache memories are small, fast SRAM-based memories

managed automatically in hardware
" Hold frequently accessed blocks of main memory

m CPU looks first for data in cache
m Typical system structure:

CPUChip
Register file
memory
= T~ — System bus

Memory bus

/0
bridge

—_—

...................................................................................................................................

Main
memory




E = 2¢ lines per set
A

4 N
B | o eee] ‘\'\/n::t
| | Jeeoof |
S=2sets Q| [ Jeoos] |

\

Cache size:
E—I [Tt | [o[z]2] =1 C = S x E x B data bytes

| — >,
~—

valid bit B = 2P bytes per cache block (the data)




E = 2¢ lines per set
A

* Locate set

* Check if any line in set
has matching tag

* Yes + line valid: hit

* Locate data starting

' "\
r at offset
| | XXX |
Address of word:
| | XXX | tbits | sbits | b bits
"""
S = 25 sets < | ” |o oo ol | tag set block
index offset
O 00000000000 00000000 OCGOG®OGOOSOOOO
& | | ....l |
data begins at this offset
[v] [tae | [o]a]2] - TB1]
valid bit ~—

B = 2° bytes per cache block (the data)



Direct mapped: One line per set
Assume: cache block size 8 bytes

B Coed DLl lelr
[v] [Ctee ] [o]2]22]als]6]7
[/] o[1]2]3]4]5]e]7

of1[2]s]a]s 67

S=25 sets<

\

Address of int:

t bits 0..01

100

find set




Direct mapped: One line per set
Assume: cache block size 8 bytes

valid? + match: assume yes = hit

Address of int:

t bits

0..01

100

block offset




Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:

valid? + match: assume yes = hit

t bits

0..01

100

[v] [t ] [o]1]2]s]a]s]6]7]

block offset

int (4 Bytes) is here

If tag doesn’t match: old line is evicted and replaced




Set 0
Setl
Set 2
Set 3

M=16 bytes (4-bit addresses), B=2 bytes/block,

S=4 sets, E=1 Blocks/set

C )N\

Address trace (reads, one byte per read):

\"

0

1
7
8
0

Tag

[0000,],
[0001,],
[0111,],
[1000,],
[0000,)

Block




E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:
t bits 0..01 | 100

(2] Ceog ] [oTaT2la e s TeTa]| — fi s




E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:
t bits 0..01 | 100

compare both

valid? + | match: yes = hit

|[] Cee ] [o[aT2[3[als 67| {[v] [Ceeg ] [o[a[2[a]5]6]7]

block offset



E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:
t bits 0..01 | 100

compare both

valid? + | match: yes = hit

L] Ceee] [o[i2l31al5T617]| | [ [ee ] [oil2[z[a]5 6 [7]| —

block offset

short int (2 Bytes) is here

No match:
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...



t=2

s=1

b

1

xx|

X

X

M=16 byte addresses, B=2 bytes/block,

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set O

Set 1

0

O O N =

Vv

Tag

[0000,],
[0001,],
[0111,],
[1000,],
[0000,]

Block




m Multiple copies of data exist:
= L1, L2, L3, Main Memory, Disk

m What to do on a write-hit?

" Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)

= Need a dirty bit (line different from memory or not)

m What to do on a write-miss?

= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
" No-write-allocate (writes straight to memory, does not load into cache)

m Typical

= Write-through + No-write-allocate
" Write-back + Write-allocate



L1 i-cache and d-cache:

Access: 40-75 cycles

L3 unified cache
(shared by all cores)

Block size: 64 bytes for
all caches.

i = - 32 KB, 8-way,

| €gs €gs Access: 4 cycles

§ L1 L1 L1 L1 L2 unified cache:

| d-cache| | i-cache d-cache| |i-cache ; 256 KB, 8-way,
" Access: 10 cycles
i L2 unified cache L2 unified cache i L3 unified cache:

8 MB, 16-way,

Main memory




Cache Breaks
4.100000 :
Level 1 cache size £) 6 x 32 KB 8-way set associative instruction caches ¢
6 x 32 KB 8-way set associative data caches j’
Level 2 cache size ( 6 x 256 KB 8-way set associative caches @
Level 3 cache size 15 MB 20-way set associative shared cache f
Physical memory 384 GB (per socket) }
3.300000 f
L1 L2 tgs i
200,000 2,352,000 13,352,00!
?
!
?
2.500000 ;
o
o
;
Mystery v va
1.700000 LO cache? @m/ o e A
32,000 P
R/ ¢ | L2 spec L3 spec
0900000 . S L1 spec 262,144 2,097,152 115,728,640
10,000 100,000 1,000,000 10,000,000 100,000

1,000

Bytes



m Miss Rate

" Fraction of memory references not found in cache (misses / accesses)
=1 - hit rate
= Typical numbers (in percentages):
= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.

m Hit Time
" Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 4 clock cycle for L1
= 10 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)



AR(C) -1 ()

m Huge difference between a hit and a miss
" Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”



m Make the common case go fast
" Focus on the inner loops of the core functions

m Minimize the misses in the inner loops
= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories



CACHE MEMORY

® CACHE MEMORY ORGANIZATION AND
OPERATION

® PERFORMANCE IMPACT OF CACHES

®* THE MEMORY MOUNTAIN

® REARRANGING LOOPS TO IMPROVE
SPATIAL LOCALITY

® USING BLOCKING TO IMPROVE
TEMPORAL LOCALITY



CACHE MEMORY

® CACHE MEMORY ORGANIZATION AND
OPERATION

® PERFORMANCE IMPACT OF CACHES
® THE MEMORY MOUNTAIN
® REARRANGING LOOPS TO IMPROVE

SPATIAL LOCALITY
® USING BLOCKING TO IMPROVE
TEMPORAL LOCALITY



m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.



\A () K \A ()

long data[MAXELEMS]; /* Global array to traverse %/

/* test - Iterate over first "elems" elements of Call test () with many

X array “data” with stride of "stride", using combinations of elems
X using 4x4 loop unrolling. and stride
%/ )

int test(int elems, int stride) {
long i, sx2=stridex2, sx3=stridex3, sxd=stridex4; | FOr each elems
long acc@ = @, accl = 0, acc2 = 0, acc3 = 0; and stride:
long length = elems, Llimit = length - sx4;

1. Call test()

/* Combine 4 elements at a time */ once to warm up
for (1 = 0; 1 < limit; 1 += sx4) { the caches.
accld = accO + data[il];
accl = accl + data[i+stride]; 2. Call test()
acc2 = acc2 + data[i+sx2]; again and measure
acc3 = acc3 + data[i+sx3]: the read
} throughput (MB/s)

/* Finish any remaining elements x/
for (; 1 < length; i++) {

accd = accO + data[il];
}

return ((acc® + accl) + (acc2 + acc3));




Aggressive

prefetching

16000 ~

14000 -

Read throughput (MB/s)

Slopes
of spatial
locality

12000 -

20

sd
Stride (x8 bytes)

\

T 128k

512k

Size (bytes)

32k

Core i7 Haswell
2.1 GHz

32 KB L1 d-cache
256 KB L2 cache

8 MB L3 cache

.64 B block size

Ridges
of temporal
locality



CACHE MEMORY

® CACHE MEMORY ORGANIZATION AND
OPERATION

® PERFORMANCE IMPACT OF CACHES
® THE MEMORY MOUNTAIN

SPATIAL LOCALITY
®* USING BLOCKING TO IMPROVE
TEMPORAL LOCALITY



m Description:

Multiply N x N matrices

Matrix elements are
doubles (8 bytes)

O(N3) total operations

N reads per source
element

N values summed per
destination

= but may be able to
hold in register

P Variable sum
/* ijk */ held in register
for (i=0; i<n; i++) { //

for (j=0; j<n; Jj++) {
sum = 0.0; <
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];
c[i][]]

sum,

matmult/mm.c




m Assume:
" Block size = 32B (big enough for four doubles)

" Matrix dimension (N) is very large
= Approximate 1/N as 0.0
" Cache is not even big enough to hold multiple rows

m Analysis Method:

" Look at access pattern of inner loop




A . . C Rk AA...

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (i1 = 0; 1 < N; 1i++)
sum += a[0][1];
" accesses successive elements
" if block size (B) > sizeof(a;) bytes, exploit spatial locality
= miss rate = sizeof(a;) / B
m Stepping through rows in one column:
" for (1 = 0; 1 < n; i++)
sum += al[1][0];
= accesses distant elements
" no spatial locality!
= miss rate =1 (i.e. 100%)



/* i3k */
for (i=0; i<n; i++) {
for (j=0; 3j<n; j++) { (*,i)
sum = 0.0; g . | (Iij)
for (k=0; k<n; k++) (i,%)
sum += a[i] [k] * b[k][j]; A B C

c[i] [§] = sum; | | |
)

matmult/mm.c Row-wise Column- Fixed
wise

Inner loop:

Misses per inner loop iteration:
A B C

0.25 1.0 0.0




/* jik */
for (3=0; j<n; Jj++) {

for (i=0; i<n; i++) { *
sum = 0.0; L;;;J J]JL-
for (k=0; k<n; k++) (i,%)

sum += a[i][k] * b[k][3]; A B
cl[i][j] = sum ‘ ‘

Inner loop:

}

matmult/mm. c Row-wise Column-
wise

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

i)

Fixed




/* kij */
Inner loop:
for (k=0; k<n; k++) {
for (i=0; i<n; i++) { (i.k) E(k'*)
r = a[i] [k]; = = (i,*)
for (j=0; j<n; j++) A B C
c[1][]J] += r * b[k][]]’ ‘ ‘ ‘
matmult/mm. c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25



/* ik]j */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i,k) Efffj(kﬁﬁ[;;;J
r = a[i] [k]; _ (i,%)
B C

for (j=0; j<n; Jj++) A
c[1][J] += r * Db[k][]]; I I I

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25



/* 3ki */ Inner loop:
for (3j=0; j<n; J++) { (* k) * i)
for (k=0; k<n; k++) { (k.j) |:I:
r = b[k][J]; || n
for (1=0; i<n; i++) A B C
c[i1][]J] += al[1][k] * r; | | |
}
matmult/mm.cf Column- Fixed  Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0




/* kji */
for (k=0; k<n; k++) {

for (j=0; j<n; J++) { * k) *
r = b[k][]j]; (|:,J')

for (i=0; i<n; i++)

Inner loop:

. . A B C
c[i1][]J] += ali][k] * r; ‘ ‘ ‘
matmult/mm. c
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0




A\NA NM A K A

for (i=0; i<n; i++) {
for (j=0; j<n; Jj++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k]l[j];
c[1] [J] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (j=0; j<n; j++)
c[i][J] += r * b[k][]];
}
}

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][]j] += a[i][k] * r;

ijk (& jik):
e 2 loads, O stores
® misses/iter = 1.25

kij (& ikj):
e 2 loads, 1 store
e misses/iter = 0.5

jki (& kji):
e 2 loads, 1 store
* misses/iter = 2.0



Cycles per inner loop iteration

100 -

RN
o

- jki
B kjj
> ijk
-o-jik
——Kij
—A—iKj

;;;k a0

—a T &% & 5 A A A%
kij / ikj

50 100 150 200 250 300 350 400 450 500 550 600 650 700

Array size (n)




CACHE MEMORY

® CACHE MEMORY ORGANIZATION AND
OPERATION

® PERFORMANCE IMPACT OF CACHES
®* THE MEMORY MOUNTAIN
® REARRANGING LOOPS TO IMPROVE
SPATIAL LOCALITY

® USING BLOCKING TO IMPROVE
TEMPORAL LOCALITY



c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int 1, j, k;
for (1 = 0; 1 < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

Il
*




m Assume:
= Cache block =8 doubles
" Cache size C << n (much smaller than n)
" Three blocks I fit into cache: 3B2< C

B block
m First (block) iteration: 1 e

= B2/8 misses for each block M BERRR

= 2n/B * B2/8 =nB/4
(omitting matrix c)

~

1
*
—HAEEEER

Block size B x B

= Afterwards in cache ] EEEEE

(schematic)

Il
*



m Assume:
" Cache block = 8 doubles
" Cache size C << n (much smaller than n)
= Three blocks M fit into cache: 3B < C

. . n/B blocks
m Second (block) iteration: A
= Same as first iteration = BEERER
= 2n/B * B2/8 =nB/4
= 2
m Total misses: Block size B x B

" nB/4 * (n/B)?=n3/(4B)



m No blocking: (9/8) * n3
m Blocking: 1/(4B) * n3

m Suggest largest possible block size B, but limit 3B2 < C!

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
» |nput data: 3n?%, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly



m

m Cache memories can have significant performance impact

m You can write your programs to exploit this!

" Focus on the inner loops, where bulk of computations and memory
accesses occur.

" Try to maximize spatial locality by reading data objects with
sequentially with stride 1.

" Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.



AL
AT
ainins

WESTMONT

JIMF




