VIRTUAL MEMORY: CONCEPTS CS 045

Computer Organization and Architecture

Prof. Donald J. Patterson Adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

VIRTUAL MEMORY: CONCEPTS

- ADDRESS SPACES
- VM AS A TOOL FOR CACHING
- VM AS A TOOL FOR MEMORY MANAGEMENT
- VM AS A TOOL FOR MEMORY PROTECTION
- ADDRESS TRANSLATION

A SYSTEM USING PHYSICAL ADDRESSING

Used in "simple" systems like embedded microcontrollers in devices like cars, elevators, and digital picture frames

A SYSTEM USING VIRTUAL ADDRESSING

Data word

- Used in all modern servers, laptops, and smart phones
- One of the great ideas in computer science

WHY VIRTUAL MEMORY (VM)?

• Uses main memory efficiently

- Use DRAM as a cache for parts of a virtual address space
- Simplifies memory management
 - Each process gets the same uniform linear address space

Isolates address spaces

- One process can't interfere with another's memory
- User program cannot access privileged kernel information and code

VIRTUAL MEMORY: CONCEPTS

- ADDRESS SPACES
- VM AS A TOOL FOR CACHING
- VM AS A TOOL FOR MEMORY MANAGEMENT
- VM AS A TOOL FOR MEMORY PROTECTION
- ADDRESS TRANSLATION

VM AS A TOOL FOR CACHING

- Conceptually, virtual memory is an array of N contiguous bytes stored on disk.
- The contents of the array on disk are cached in *physical memory* (*DRAM cache*)
 - These cache blocks are called *pages* (size is P = 2^p bytes)

DRAM CACHE ORGANIZATION

- DRAM cache organization driven by the enormous miss penalty
 - DRAM is about 10x slower than SRAM
 - Disk is about 10,000x slower than DRAM

Consequences

- Large page (block) size:
 - typically 4 KB, sometimes 4 MB
- Fully associative
 - Any VP can be placed in any PP
 - Requires a "large" mapping function different from cache memories
- Highly sophisticated, expensive replacement algorithms
 - Too complicated and open-ended to be implemented in hardware
- Write-back rather than write-through

ENABLING DATA STRUCTURE: PAGE TABLE

A page table is an array of page table entries (PTEs) that maps virtual pages to physical pages.

Per-process kernel data structure in DRAM

PAGE HIT

 Page hit: reference to VM word that is in physical memory (DRAM cache hit)

PAGE FAULT

Page fault: reference to VM word that is not in physical memory (DRAM cache miss)

Page miss causes page fault (an exception)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)
- Offending instruction is restarted: page hit!

ALLOCATING PAGES

Allocating a new page (VP 5) of virtual memory.

LOCALITY TO THE RESCUE AGAIN!

- Virtual memory seems terribly inefficient, but it works because of locality.
- At any point in time, programs tend to access a set of active virtual pages called the working set
 - Programs with better temporal locality will have smaller working sets
- If (working set size < main memory size)
 - Good performance for one process after compulsory misses
- If (SUM(working set sizes) > main memory size)
 - Thrashing: Performance meltdown where pages are swapped (copied) in and out continuously

WATCH VIRTUAL MEMORY IN TOP

top - 07:22:39 up 18 days, 11:12, 1 user, load average: 0.00, 0.00, 0.00
Tasks: 1123 total, 1 running, 1122 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.1%us, 0.2%sy, 0.0%ni, 99.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 66057332k total, 3955752k used, 62101580k free, 326808k buffers
Swap: 16777208k total, 0k used, 16777208k free, 2227792k cached

PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	nFLT	COMMAND
3556	root	20	0	303m	14m	7688	S	0.0	0.0	0:38.90	93	httpd
3884	gdm	20	0	360m	31m	9424	S	0.0	0.0	0:22.93	74	gnome-settings-
3744	root	20	0	188m	35m	6168	S	0.0	0.1	0:46.69	71	Xorg
3456	rocksdb	20	0	500m	11m	4696	s	0.0	0.0	0:03.79	64	mysqld
3859	gdm	20	0	262m	7716	6104	s	0.0	0.0	0:00.20	60	gnome-session
3895	gdm	20	0	371m	15m	10m	s	0.0	0.0	0:25.67	21	gdm-simple-gree
3880	gdm	20	0	117m	4432	3580	s	0.0	0.0	0:04.15	13	at-spi-registry
3787	root	20	0	4019m	3464	2048	s	0.0	0.0	0:00.44	12	console-kit-dae
3741	root	20	0	162m	3112	2564	S	0.0	0.0	0:00.00	10	gdm-simple-slav
1	root	20	0	19364	1560	1236	S	0.0	0.0	0:01.48	9	init
3894	gdm	20	0	276m	9644	7228	S	0.0	0.0	0:04.32	9	metacity
2235	root	20	0	319m	2984	1140	S	0.0	0.0	0:27.75	5	rsyslogd
2298	named	20	0	1884m	42m	2644	s	0.0	0.1	0:02.37	5	named
2626	haldaemo	20	0	38316	4636	3332	s	0.0	0.0	0:09.47	4	hald
3634	root	20	0	101m	4832	2484	s	0.0	0.0	0:04.85	4	tracker-server
3886	gdm	20	0	352m	5080	2412	s	0.0	0.0	0:00.01	4	bonobo-activati
3897	gdm	20	0	265m	8424	6700	S	0.0	0.0	0:13.59	4	gnome-power-man
3893	gdm	20	0	131m	1900	1616	S	0.0	0.0	0:00.00	3	gvfsd
3901	root	20	0	52400	3996	2972	S	0.0	0.0	0:00.14	3	polkitd
3555	postfix	20	0	81536	3472	2540	s	0.0	0.0	0:01.43	2	qmgr
3638	root	20	0	132m	2204	1892	s	0.0	0.0	0:00.03	2	gdm-binary
3866	gdm	20	0	131m	4484	2212	s	0.0	0.0	0:04.97	2	gconfd-2
3896	gdm	20	0	242m	7244	5736	s	0.0	0.0	0:00.01	2	polkit-gnome-au
2627	root	20	0	20328	1176	976	s	0.0	0.0	0:00.00	1	hald-runner
2666	haldaemo	20	0	17936	1028	888	S	0.0	0.0	0:00.00	1	hald-addon-acpi
2668	root	20	0	22448	1092	932	S	0 0	0 0	0.00 00	1	hald-addon-innu

WATCH VIRTUAL MEMORY IN TOP

the 'text resident set' size or TRS.

- n: %MEM -- Wemory usage (RES) A task's currently used share of available physical memory. o: VIRT -- Virtual Image (kb) The total amount of virtual memory used by the task. It includes all code, data and shared libraries plus pages that have been swapped out. (Note: you can define the STATSIZE=1 environment variable and the VIRT will be calculated from the /proc/#/state VmSize field.) p: SWAP -- Swapped size (kb) Per-process swap values are now taken from /proc/#/status VmSwap field. q: RES -- Resident size (kb) The non-swapped physical memory a task has used. RES = CODE + DATA. r: CODE -- Code size (kb) The amount of physical memory devoted to executable code, also known as
- s: DATA -- Data+Stack size (kb)
 The amount of physical memory devoted to other than executable code, also
 known as the 'data resident set' size or DRS.
- t: SHR -- Shared Mem size (kb) The amount of shared memory used by a task. It simply reflects memory that could be potentially shared with other processes.

u: nFLT -- Page Fault count The number of major page faults that have occurred for a task. A page fault occurs when a process attempts to read from or write to a virtual page that is not currently present in its address space. A major page fault is when disk access is involved in making that page available.

v: nDRT -- Dirty Pages count The number of pages that have been modified since they were last written to disk. Dirty pages must be written to disk before the corresponding physical memory location can be used for some other virtual page.

