
DYNAMIC MEMORY ALLOCATION: 
ADVANCED CONCEPTS
CS 045

Computer Organization and
Architecture

Prof. Donald J. Patterson
Adapted from Bryant and O’Hallaron,
Computer Systems:
A Programmer’s Perspective, Third Edition

• EXPLICIT FREE LISTS

• SEGREGATED FREE LISTS

• GARBAGE COLLECTION

• MEMORY-RELATED PERILS AND PITFALLS

DYNAMIC MEMORY ALLOCATION: BASIC

KEEPING TRACK OF FREE BLOCKS
¢  Method	1:	Implicit	free	list	using	length—links	all	blocks	

¢  Method	2:	Explicit	free	list	among	the	free	blocks	using	pointers	

	
¢  Method	3:	Segregated	free	list	

!  Different	free	lists	for	different	size	classes	

¢  Method	4:	Blocks	sorted	by	size	
!  Can	use	a	balanced	tree	(e.g.	Red-Black	tree)	with	pointers	within	each	

free	block,	and	the	length	used	as	a	key	

5 4	 2	6	

5 4	 2	6	

EXPLICIT FREE LISTS

¢  Maintain	list(s)	of	free	blocks,	not	all	blocks	
!  The	“next”	free	block	could	be	anywhere	

!  So	we	need	to	store	forward/back	pointers,	not	just	sizes	
!  S>ll	need	boundary	tags	for	coalescing	
!  Luckily	we	track	only	free	blocks,	so	we	can	use	payload	area	

Size	

Payload	and	
padding	

a	

Size	 a	

Size	 a	

Size	 a	

Next	

Prev	

Allocated	(as	before)	 Free	

EXPLICIT FREE LISTS

¢  Logically:	

¢  Physically:	blocks	can	be	in	any	order	

A	 B	 C	

4	 4	 4	 4	 6	6	 4	4	 4	 4	

Forward	(next)	links	

Back	(prev)	links	

A	 B	

C	

EXPLICIT FREE LISTS

¢  Logically:	

¢  Physically:	blocks	can	be	in	any	order	

A	 B	 C	

4	 4	 4	 4	 6	6	 4	4	 4	 4	

Forward	(next)	links	

Back	(prev)	links	

A	 B	

C	

ALLOCATING FROM EXPLICIT FREE LISTS

Before	

A(er	

= malloc(…)

(with	spli1ng)	

conceptual	graphic	

FREEING WITH EXPLICIT FREE LISTS
¢  Inser&on	policy:	Where	in	the	free	list	do	you	put	a	newly	

freed	block?	
¢  LIFO	(last-in-first-out)	policy	

!  Insert	freed	block	at	the	beginning	of	the	free	list	
!  Pro:	simple	and	constant	5me	

!  Con:	studies	suggest	fragmenta5on	is	worse	than	address	ordered	

¢  Address-ordered	policy	
!  Insert	freed	blocks	so	that	free	list	blocks	are	always	in	address	order:		

										addr(prev)	<	addr(curr)	<	addr(next)	

!  	Con:	requires	search	
!  	Pro:	studies	suggest	fragmenta5on	is	lower	than	LIFO	

	

FREEING WITH A LIFO POLICY (CASE 1)

¢  Insert	the	freed	block	at	the	root	of	the	list	

free()

Root	

Root	

Before	

A(er	

conceptual	graphic	

FREEING WITH A LIFO POLICY (CASE 2)

¢  Splice	out	successor	block,	coalesce	both	memory	blocks	and	
insert	the	new	block	at	the	root	of	the	list	

free()

Root	

Before	

Root	

A(er	

conceptual	graphic	

FREEING WITH A LIFO POLICY (CASE 3)

¢  Splice	out	predecessor	block,	coalesce	both	memory	blocks,	
and	insert	the	new	block	at	the	root	of	the	list	

free()

Root	

Root	

Before	

A(er	

conceptual	graphic	

FREEING WITH A LIFO POLICY (CASE 4)

¢  Splice	out	predecessor	and	successor	blocks,	coalesce	all	3	
memory	blocks	and	insert	the	new	block	at	the	root	of	the	list	

free()

Root	

Before	

Root	

A(er	

conceptual	graphic	

EXPLICIT LIST SUMMARY
¢  Comparison	to	implicit	list:	

!  Allocate	is	linear	-me	in	number	of	free	blocks	instead	of	all	blocks	

!  Much	faster	when	most	of	the	memory	is	full		
!  Slightly	more	complicated	allocate	and	free	since	needs	to	splice	blocks	

in	and	out	of	the	list	

!  Some	extra	space	for	the	links	(2	extra		words	needed	for	each	block)	

!  Does	this	increase	internal	fragmenta-on?	

¢  Most	common	use	of	linked	lists	is	in	conjunc6on	with	
segregated	free	lists	
!  Keep	mul-ple	linked	lists	of	different	size	classes,	or	possibly	for	

different	types	of	objects	

KEEPING TRACK OF FREE BLOCKS

¢  Method	1:	Implicit	list	using	length—links	all	blocks	

¢  Method	2:	Explicit	list	among	the	free	blocks	using	pointers	

	
¢  Method	3:	Segregated	free	list	

!  Different	free	lists	for	different	size	classes	

¢  Method	4:	Blocks	sorted	by	size	
!  Can	use	a	balanced	tree	(e.g.	Red-Black	tree)	with	pointers	within	each	

free	block,	and	the	length	used	as	a	key	

5 4	 2	6	

5 4	 2	6	

• EXPLICIT FREE LISTS

• SEGREGATED FREE LISTS

• GARBAGE COLLECTION

• MEMORY-RELATED PERILS AND PITFALLS

DYNAMIC MEMORY ALLOCATION: BASIC

SEGREGATED LIST (SEGLIST) ALLOCATORS
¢  Each	size	class	of	blocks	has	its	own	free	list	

¢  O3en	have	separate	classes	for	each	small	size	
¢  For	larger	sizes:	One	class	for	each	two-power	size	

1-2	

3	

4	

5-8	

9-inf	

SEGLIST ALLOCATOR

¢  Given	an	array	of	free	lists,	each	one	for	some	size	class	

¢  To	allocate	a	block	of	size	n:	
!  Search	appropriate	free	list	for	block	of	size	m	>	n	
!  If	an	appropriate	block	is	found:	

!  Split	block	and	place	fragment	on	appropriate	list	(op:onal)	
!  If	no	block	is	found,	try	next	larger	class	
!  Repeat	un:l	block	is	found	
	

¢  If	no	block	is	found:	
!  Request	addi:onal	heap	memory	from	OS	(using	sbrk())	
!  Allocate	block	of	n	bytes	from	this	new	memory	
!  Place	remainder	as	a	single	free	block	in	largest	size	class.	

SEGLIST ALLOCATOR (CONT.)

¢  To	free	a	block:	
!  Coalesce	and	place	on	appropriate	list		
	

¢  Advantages	of	seglist	allocators	
!  Higher	throughput	

!  	log	3me	for	power-of-two	size	classes	

!  Be:er	memory	u3liza3on	

!  First-fit	search	of	segregated	free	list	approximates	a	best-fit	search	
of	en3re	heap.	

!  Extreme	case:	Giving	each	block	its	own	size	class	is	equivalent	to	
best-fit.	

	

• D. Knuth, “The Art of Computer Programming”, 2nd
edition, Addison Wesley, 1973

• The classic reference on dynamic storage allocation

• Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop on
Memory Management, Kinross, Scotland, Sept, 1995.

• Comprehensive survey

• Available on Canvas

MORE INFO ON ALLOCATORS

SIDENOTE: FAITH AND COMPUTER SCIENCE

How does a computer scientist understand infinity? What can probability theory teach us about free
will? Can mathematical notions be used to enhance one's personal understanding of the Bible?

Perhaps no one is more qualified to address these questions than Donald E. Knuth, whose massive
contributions to computing have led others to nickname him "The Father of Computer Science"—and
whose religious faith led him to understand a fascinating analysis of the Bible called the 3:16 project.
In this series of six spirited, informal lectures, Knuth explores the relationships between his vocation
and his faith, revealing the unique perspective that his work with computing has lent to his
understanding of God.

His starting point is the 3:16 project, an application of mathematical "random sampling" to the books
of the Bible. The first lectures tell the story of the project's conception and execution, exploring its
many dimensions of language translation, aesthetics, and theological history. Along the way, Knuth
explains the many insights he gained from such interdisciplinary work. These theological musings
culminate in a surprising final lecture tackling the ideas of infinity, free will, and some of the other big
questions that lie at the juncture of theology and computation.

Things a Computer Scientist Rarely Talks About, with its charming and user-friendly format—each
lecture ends with a question and answer exchange, and the book itself contains more than 100
illustrations—is a readable and intriguing approach to a crucial topic, certain to edify both those who
are serious and curious about their faiths and those who look at the science of computation and
wonder what it might teach them about their spiritual world.

from Publisher’s comments on “Things”

• EXPLICIT FREE LISTS

• SEGREGATED FREE LISTS

• GARBAGE COLLECTION

• MEMORY-RELATED PERILS AND PITFALLS

DYNAMIC MEMORY ALLOCATION: BASIC

IMPLICIT MEMORY MANAGEMENT: 
GARBAGE COLLECTION

¢  Garbage	collec+on:	automa&c	reclama&on	of	heap-allocated	
storage—applica&on	never	has	to	free	

¢  Common	in	many	dynamic	languages:	
!  Python,	Ruby,	Java,	Perl,	ML,	Lisp,	Mathema8ca	

¢  Variants	(“conserva&ve”	garbage	collectors)	exist	for	C	and	C++	
!  However,	cannot	necessarily	collect	all	garbage	

	

void foo() {
 int *p = malloc(128);
 return; /* p block is now garbage */
}

GARBAGE COLLECTION

¢  How	does	the	memory	manager	know	when	memory	can	be	
freed?	
!  In	general	we	cannot	know	what	is	going	to	be	used	in	the	future	since	it	

depends	on	condi6onals	
!  But	we	can	tell	that	certain	blocks	cannot	be	used	if	there	are	no	

pointers	to	them	

¢  Must	make	certain	assump9ons	about	pointers	
!  Memory	manager	can	dis6nguish	pointers	from	non-pointers	
!  All	pointers	point	to	the	start	of	a	block		
!  Cannot	hide	pointers		

(e.g.,	by	coercing	them	to	an	int,	and	then	back	again)	

CLASSIC GC ALGORITHMS

¢  Mark-and-sweep	collec0on	(McCarthy,	1960)	
!  Does	not	move	blocks	(unless	you	also	“compact”)	

¢  Reference	coun0ng	(Collins,	1960)	
!  Does	not	move	blocks	(not	discussed)	

¢  Copying	collec0on	(Minsky,	1963)	
!  Moves	blocks	(not	discussed)	

¢  Genera0onal	Collectors	(Lieberman	and	HewiG,	1983)	
!  Collec:on	based	on	life:mes	

!  Most	alloca:ons	become	garbage	very	soon	

!  So	focus	reclama:on	work	on	zones	of	memory	recently	allocated	

¢  For	more	informa0on:		
Jones	and	Lin,	“Garbage	Collec,on:	Algorithms	for	Automa,c	
Dynamic	Memory”,	John	Wiley	&	Sons,	1996.	

MEMORY AS A GRAPH
¢  We	view	memory	as	a	directed	graph	

!  Each	block	is	a	node	in	the	graph		
!  Each	pointer	is	an	edge	in	the	graph	
!  Loca4ons	not	in	the	heap	that	contain	pointers	into	the	heap	are	called	

root		nodes		(e.g.	registers,	loca4ons	on	the	stack,	global	variables)	

Root	nodes	

Heap	nodes	

Not-reachable	
(garbage)	

reachable	

A	node	(block)	is	reachable		if	there	is	a	path	from	any	root	to	that	node.	

Non-reachable	nodes	are	garbage	(cannot	be	needed	by	the	applica>on)	

MARK AND SWEEP COLLECTING
¢  Can	build	on	top	of	malloc/free	package	

!  Allocate	using	malloc	un.l	you	“run	out	of	space”	
¢  When	out	of	space:	

!  Use	extra	mark	bit	in	the	head	of	each	block	

!  Mark:	Start	at	roots	and	set	mark	bit	on	each	reachable	block	
!  Sweep:	Scan	all	blocks	and	free	blocks	that	are	not	marked	

A0er	mark	 Mark	bit	set	

A0er	sweep	 free	free	

root	

Before	mark	

Note:	arrows	
here	denote	

memory	refs,	not	
free	list	ptrs.		

ASSUMPTIONS FOR A SIMPLE IMPLEMENTATION

¢  Applica'on	
!  new(n):		returns	pointer	to	new	block	with	all	loca2ons	cleared	
!  read(b,i):	read	loca2on	i	of	block	b	into	register	
!  write(b,i,v): write	v	into	loca2on	i	of	block	b

¢  Each	block	will	have	a	header	word	
!  addressed	as	b[-1],	for	a	block	b
!  Used	for	different	purposes	in	different	collectors	
	

¢  Instruc'ons	used	by	the	Garbage	Collector	
!  is_ptr(p):	determines	whether	p	is	a	pointer	
!  length(b):		returns	the	length	of	block	b,	not	including	the	header	
!  get_roots():		returns	all	the	roots	

MARK AND SWEEP (CONT.)

ptr mark(ptr p) {
 if (!is_ptr(p)) return; // do nothing if not pointer
 if (markBitSet(p)) return; // check if already marked
 setMarkBit(p); // set the mark bit
 for (i=0; i < length(p); i++) // call mark on all words
 mark(p[i]); // in the block
 return;
}

Mark	using	depth-first	traversal	of	the	memory	graph		

Sweep	using	lengths	to	find	next	block	
ptr sweep(ptr p, ptr end) {
 while (p < end) {
 if markBitSet(p)
 clearMarkBit();
 else if (allocateBitSet(p))
 free(p);
 p += length(p);
}

CONSERVATIVE MARK & SWEEP IN C

¢  A	“conserva,ve	garbage	collector”	for	C	programs	
!  is_ptr()	determines	if	a	word	is	a	pointer	by	checking	if	it	points	to	

an	allocated	block	of	memory	

!  But,	in	C	pointers	can	point	to	the	middle	of	a	block	
	

	

	

¢  So	how	to	find	the	beginning	of	the	block?	
!  Can	use	a	balanced	binary	tree	to	keep	track	of	all	allocated	blocks	(key	

is	start-of-block)	

!  Balanced-tree	pointers	can	be	stored	in	header	(use	two	addi=onal	
words)	

Header	

ptr	

Head	 Data	

LeA	 Right	

Size	
LeA:	smaller	addresses	
Right:	larger	addresses	

• EXPLICIT FREE LISTS

• SEGREGATED FREE LISTS

• GARBAGE COLLECTION

• MEMORY-RELATED PERILS AND PITFALLS

DYNAMIC MEMORY ALLOCATION: BASIC

MEMORY-RELATED PERILS AND PITFALLS

• Dereferencing bad pointers

• Reading uninitialized memory

• Overwriting memory

• Referencing nonexistent variables

• Freeing blocks multiple times

• Referencing freed blocks

• Failing to free blocks

C OPERATORS
Operators 	 	 	 	 	Associa-vity	
() [] -> . le#	to	right	
! ~ ++ -- + - * & (type) sizeof right	to	le#	
* / % le#	to	right	
+ - le#	to	right	
<< >> le#	to	right	
< <= > >= le#	to	right	
== != le#	to	right	
& le#	to	right	
^ le#	to	right	
| le#	to	right	
&& le#	to	right	
|| le#	to	right	
?: right	to	le#	
= += -= *= /= %= &= ^= != <<= >>= right	to	le#	
, le#	to	right	

¢  	->,	(),	and	[]	have	high	precedence,	with	*	and	&	just	below	
¢  Unary	+, -,	and	*	have	higher	precedence	than	binary	forms	

Source:	K&R	page	53	

DEREFERENCING BAD POINTERS

¢  The	classic	scanf	bug	

int val;

...

scanf(“%d”, val);

READING UNINITIALIZED MEMORY

¢  Assuming	that	heap	data	is	ini/alized	to	zero	

/* return y = Ax */
int *matvec(int **A, int *x) {
 int *y = malloc(N*sizeof(int));
 int i, j;

 for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 y[i] += A[i][j]*x[j];
 return y;
}

OVERWRITING MEMORY

¢  Alloca&ng	the	(possibly)	wrong	sized	object	

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
 p[i] = malloc(M*sizeof(int));
}

OVERWRITING MEMORY

¢  Off-by-one	error	

int **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {
 p[i] = malloc(M*sizeof(int));
}

OVERWRITING MEMORY

¢  Not	checking	the	max	string	size	

¢  Basis	for	classic	buffer	overflow	a;acks	

char s[8];
int i;

gets(s); /* reads “123456789” from stdin */

OVERWRITING MEMORY

¢  Misunderstanding	pointer	arithme1c	

int *search(int *p, int val) {

 while (*p && *p != val)
 p += sizeof(int);

 return p;
}

OVERWRITING MEMORY

¢  Referencing	a	pointer	instead	of	the	object	it	points	to	

int *BinheapDelete(int **binheap, int *size) {
 int *packet;
 packet = binheap[0];
 binheap[0] = binheap[*size - 1];
 *size--;
 Heapify(binheap, *size, 0);
 return(packet);
}

REFERENCING NONEXISTENT VARIABLES

¢  Forge&ng	that	local	variables	disappear	when	a	func7on	
returns	

int *foo () {
 int val;

 return &val;
}

FREEING BLOCKS MULTIPLE TIMES

¢  Nasty!	

x = malloc(N*sizeof(int));
 <manipulate x>
free(x);

y = malloc(M*sizeof(int));
 <manipulate y>
free(x);

DEALING WITH MEMORY BUGS

¢  Debugger:	gdb
!  Good	for	finding		bad	pointer	dereferences	
!  Hard	to	detect	the	other	memory	bugs	

¢  Data	structure	consistency	checker	
!  	Runs	silently,	prints	message	only	on	error	
!  Use	as	a	probe	to	zero	in	on	error	

¢  Binary	translator:		valgrind		
!  Powerful	debugging	and	analysis	technique	
!  Rewrites	text	sec@on	of	executable	object	file	
!  Checks	each	individual	reference	at	run@me	

!  Bad	pointers,	overwrites,	refs	outside	of	allocated	block	

¢  glibc	malloc	contains	checking	code	
!  setenv MALLOC_CHECK_ 3

SUMMARY

